A pontuação de confiança informa o quanto o modelo associa cada classe ou rótulo a um item de teste. Quanto maior o número, maior a confiança do modelo de que o rótulo precisa ser aplicado a esse item. Você decide o nível de confiança necessário para aceitar os resultados do modelo.
Controle deslizante de limite de pontuação
No console do Google Cloud, a Vertex AI fornece um controle deslizante usado para ajustar o limite de confiança de todas as classes ou identificadores ou uma classe ou identificador individual. O controle deslizante está disponível na página de detalhes de um modelo na guia Avaliar. O limite de confiança é o nível de confiança que o modelo precisa ter para atribuir uma classe ou um identificador a um item de teste. Ao ajustar o limite, é possível ver como a precisão e o recall do modelo mudam. Limites mais altos normalmente aumentam a precisão, mas diminuem o recall.
Exemplo de saída de previsão em lote
A saída da previsão em lote de classificação de imagens do AutoML é armazenada como arquivos JSON Lines em buckets do Cloud Storage. Cada linha do arquivo JSON Lines contém todas as categorias de anotação (rótulo) e as pontuações de confiança correspondentes de um único arquivo de imagem.
{ "instance": {"content": "gs://bucket/image.jpg", "mimeType": "image/jpeg"}, "prediction": { "ids": [1, 2], "displayNames": ["cat", "dog"], "confidences": [0.7, 0.5] } }