Mengelola dan menemukan fitur

Pelajari cara mengelola dan menemukan fitur.

Membuat fitur

Buat satu fitur untuk jenis entity yang ada. Untuk membuat beberapa fitur dalam satu permintaan, lihat Membuat fitur secara massal.

UI web

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.

    Buka halaman Fitur

  2. Pilih region dari menu drop-down Region.
  3. Dalam tabel fitur, lihat kolom Jenis entity lalu klik jenis entity yang ingin ditambah fitur.
  4. Klik Tambahkan fitur untuk membuka panel Tambahkan fitur.
  5. Tentukan nama, jenis nilai, dan (opsional) deskripsi untuk fitur.
  6. Untuk mengaktifkan pemantauan nilai fitur (Pratinjau), di bagian Pemantauan fitur, pilih Ganti konfigurasi pemantauan jenis entity, lalu masukkan jumlah hari antar-snapshot. Konfigurasi ini akan mengganti konfigurasi pemantauan yang sudah ada atau yang akan datang pada jenis entity fitur tersebut. Untuk mengetahui informasi selengkapnya, lihat Pemantauan nilai fitur.
  7. Untuk menambahkan fitur lainnya, klik Tambahkan fitur lainnya.
  8. Klik Simpan.

REST

Untuk membuat fitur untuk jenis entity yang sudah ada, kirim permintaan POST menggunakan metode featurestores.entityTypes.features.create.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.
  • FEATURESTORE_ID: ID featurestore.
  • ENTITY_TYPE_ID: ID jenis entity.
  • FEATURE_ID: ID untuk fitur.
  • DESCRIPTION: Deskripsi fitur.
  • VALUE_TYPE: Jenis nilai fitur.

Metode HTTP dan URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID

Isi JSON permintaan:

{
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE"
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content

Anda akan melihat output yang mirip dengan berikut ini: Anda dapat menggunakan OPERATION_ID sebagai respons untuk mendapatkan status operasi.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

from google.cloud import aiplatform


def create_feature_sample(
    project: str,
    location: str,
    feature_id: str,
    value_type: str,
    entity_type_id: str,
    featurestore_id: str,
):

    aiplatform.init(project=project, location=location)

    my_feature = aiplatform.Feature.create(
        feature_id=feature_id,
        value_type=value_type,
        entity_type_name=entity_type_id,
        featurestore_id=featurestore_id,
    )

    my_feature.wait()

    return my_feature

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateFeatureOperationMetadata;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String description = "YOUR_FEATURE_DESCRIPTION";
    ValueType valueType = ValueType.STRING;
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 900;
    createFeatureSample(
        project,
        featurestoreId,
        entityTypeId,
        featureId,
        description,
        valueType,
        location,
        endpoint,
        timeout);
  }

  static void createFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String description,
      ValueType valueType,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      Feature feature =
          Feature.newBuilder().setDescription(description).setValueType(valueType).build();

      CreateFeatureRequest createFeatureRequest =
          CreateFeatureRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setFeature(feature)
              .setFeatureId(featureId)
              .build();

      OperationFuture<Feature, CreateFeatureOperationMetadata> featureFuture =
          featurestoreServiceClient.createFeatureAsync(createFeatureRequest);
      System.out.format("Operation name: %s%n", featureFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Feature featureResponse = featureFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Create Feature Response");
      System.out.format("Name: %s%n", featureResponse.getName());
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const valueType = 'FEATURE_VALUE_DATA_TYPE';
// const description = 'YOUR_ENTITY_TYPE_DESCRIPTION';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function createFeature() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const feature = {
    valueType: valueType,
    description: description,
  };

  const request = {
    parent: parent,
    feature: feature,
    featureId: featureId,
  };

  // Create Feature request
  const [operation] = await featurestoreServiceClient.createFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Create feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createFeature();

Fitur pembuatan secara massal

Membuat fitur secara massal untuk jenis yang sudah ada. Untuk permintaan pembuatan batch, Vertex AI Feature Store (Lama) dapat membuat beberapa fitur sekaligus, dan cara ini lebih cepat untuk membuat fitur dalam jumlah besar dibandingkan dengan metode featurestores.entityTypes.features.create.

UI web

Lihat membuat fitur.

REST

Untuk membuat satu atau beberapa fitur jenis entity yang sudah ada, kirim permintaan POST menggunakan metode featurestores.entityTypes.features.batchCreate seperti yang ditunjukkan dalam contoh berikut.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.
  • FEATURESTORE_ID: ID featurestore.
  • ENTITY_TYPE_ID: ID jenis entity.
  • PARENT: Nama resource jenis entity tempat membuat fitur. Format yang diperlukan:
    projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
  • FEATURE_ID: ID untuk fitur.
  • DESCRIPTION: Deskripsi fitur.
  • VALUE_TYPE: Jenis nilai fitur.
  • DURATION: (Opsional) Durasi interval antar-snapshot dalam hitungan detik. Nilai harus diakhiri dengan `s`.

Metode HTTP dan URL:

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate

Isi JSON permintaan:

{
  "requests": [
    {
      "parent" : "PARENT_1",
      "feature": {
        "description": "DESCRIPTION_1",
        "valueType": "VALUE_TYPE_1",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_1"
    },
    {
      "parent" : "PARENT_2",
      "feature": {
        "description": "DESCRIPTION_2",
        "valueType": "VALUE_TYPE_2",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_2"
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content

Anda akan melihat output yang mirip dengan berikut ini: Anda dapat menggunakan OPERATION_ID sebagai respons untuk mendapatkan status operasi.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Untuk mempelajari cara menginstal atau mengupdate Vertex AI SDK untuk Python, lihat Menginstal Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi Python API.

from google.cloud import aiplatform


def batch_create_features_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_id: str,
    sync: bool = True,
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.featurestore.EntityType(
        entity_type_name=entity_type_id, featurestore_id=featurestore_id
    )

    FEATURE_CONFIGS = {
        "age": {"value_type": "INT64", "description": "User age"},
        "gender": {"value_type": "STRING", "description": "User gender"},
        "liked_genres": {
            "value_type": "STRING_ARRAY",
            "description": "An array of genres this user liked",
        },
    }

    my_entity_type.batch_create_features(feature_configs=FEATURE_CONFIGS, sync=sync)

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesRequest;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesResponse;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchCreateFeaturesSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;
    batchCreateFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
  }

  static void batchCreateFeaturesSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      List<CreateFeatureRequest> createFeatureRequests = new ArrayList<>();

      Feature titleFeature =
          Feature.newBuilder()
              .setDescription("The title of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature genresFeature =
          Feature.newBuilder()
              .setDescription("The genres of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature averageRatingFeature =
          Feature.newBuilder()
              .setDescription("The average rating for the movie, range is [1.0-5.0]")
              .setValueType(ValueType.DOUBLE)
              .build();

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder().setFeature(titleFeature).setFeatureId("title").build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(genresFeature)
              .setFeatureId("genres")
              .build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(averageRatingFeature)
              .setFeatureId("average_rating")
              .build());

      BatchCreateFeaturesRequest batchCreateFeaturesRequest =
          BatchCreateFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .addAllRequests(createFeatureRequests)
              .build();

      OperationFuture<BatchCreateFeaturesResponse, BatchCreateFeaturesOperationMetadata>
          batchCreateFeaturesFuture =
              featurestoreServiceClient.batchCreateFeaturesAsync(batchCreateFeaturesRequest);
      System.out.format(
          "Operation name: %s%n", batchCreateFeaturesFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      BatchCreateFeaturesResponse batchCreateFeaturesResponse =
          batchCreateFeaturesFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Batch Create Features Response");
      System.out.println(batchCreateFeaturesResponse);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function batchCreateFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const ageFeature = {
    valueType: 'INT64',
    description: 'User age',
  };

  const ageFeatureRequest = {
    feature: ageFeature,
    featureId: 'age',
  };

  const genderFeature = {
    valueType: 'STRING',
    description: 'User gender',
  };

  const genderFeatureRequest = {
    feature: genderFeature,
    featureId: 'gender',
  };

  const likedGenresFeature = {
    valueType: 'STRING_ARRAY',
    description: 'An array of genres that this user liked',
  };

  const likedGenresFeatureRequest = {
    feature: likedGenresFeature,
    featureId: 'liked_genres',
  };

  const requests = [
    ageFeatureRequest,
    genderFeatureRequest,
    likedGenresFeatureRequest,
  ];

  const request = {
    parent: parent,
    requests: requests,
  };

  // Batch Create Features request
  const [operation] = await featurestoreServiceClient.batchCreateFeatures(
    request,
    {timeout: Number(timeout)}
  );
  const [response] = await operation.promise();

  console.log('Batch create features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
batchCreateFeatures();

Membuat daftar fitur

Buat daftar semua fitur di lokasi tertentu. Untuk menelusuri fitur di semua jenis entity dan featurestore di lokasi tertentu, lihat metode Menelusuri fitur.

UI web

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.

    Buka halaman Fitur

  2. Pilih region dari menu drop-down Region.
  3. Dalam tabel fitur, lihat kolom Fitur untuk melihat berbagai fitur di project Anda untuk region yang dipilih.

REST

Agar dapat mencantumkan semua fitur untuk satu jenis entity, kirim permintaan GET menggunakan metode featurestores.entityTypes.features.list.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.
  • FEATURESTORE_ID: ID featurestore.
  • ENTITY_TYPE_ID: ID jenis entity.

Metode HTTP dan URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Jalankan perintah berikut:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"

PowerShell

Jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip seperti berikut:

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.626644Z",
      "updateTime": "2021-03-01T22:41:20.626644Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-02-25T01:27:00.544230Z",
      "updateTime": "2021-02-25T01:27:00.544230Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.628493Z",
      "updateTime": "2021-03-01T22:41:20.628493Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35"
    }
  ]
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.ListFeaturesRequest;
import java.io.IOException;

public class ListFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    listFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint);
  }

  static void listFeaturesSample(
      String project, String featurestoreId, String entityTypeId, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      ListFeaturesRequest listFeaturesRequest =
          ListFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .build();
      System.out.println("List Features Response");
      for (Feature element :
          featurestoreServiceClient.listFeatures(listFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function listFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const request = {
    parent: parent,
  };

  // List Features request
  const [response] = await featurestoreServiceClient.listFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('List features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
listFeatures();

Bahasa tambahan

Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Menelusuri fitur

Menelusuri fitur berdasarkan satu atau beberapa propertinya, seperti ID fitur, ID jenis entity, atau deskripsi fitur. Vertex AI Feature Store (Lama) menelusuri di semua featurestore dan jenis entity di lokasi tertentu. Anda juga dapat membatasi hasil dengan memfilter featurestore, jenis nilai, dan label tertentu.

Untuk mencantumkan semua fitur, lihat Mencantumkan fitur.

UI web

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.

    Buka halaman Fitur

  2. Pilih region dari menu drop-down Region.
  3. Klik kolom Filter di tabel fitur.
  4. Pilih properti yang akan difilter, misalnya Fitur, yang menampilkan fitur yang berisi string yang cocok di mana pun dalam ID-nya.
  5. Ketik nilai untuk filter, lalu tekan enter. Vertex AI Feature Store (Lama) menampilkan hasil dalam tabel fitur.
  6. Untuk menambahkan filter lain, klik lagi kolom Filter.

REST

Untuk menelusuri fitur, kirim permintaan GET menggunakan metode featurestores.searchFeatures. Contoh berikut menggunakan beberapa parameter penelusuran yang ditulis sebagai featureId:test AND valueType=STRING. Kueri menampilkan fitur yang berisi test di ID-nya dan yang nilainya berjenis STRING.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.

Metode HTTP dan URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Jalankan perintah berikut:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""

PowerShell

Jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip seperti berikut:

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1",
      "description": "featurestore test1",
      "createTime": "2021-02-26T18:16:09.528185Z",
      "updateTime": "2021-02-26T18:16:09.528185Z",
      "labels": {
        "environment": "testing"
      }
    }
  ]
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.SearchFeaturesRequest;
import java.io.IOException;

public class SearchFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String query = "YOUR_QUERY";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    searchFeaturesSample(project, query, location, endpoint);
  }

  static void searchFeaturesSample(String project, String query, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      SearchFeaturesRequest searchFeaturesRequest =
          SearchFeaturesRequest.newBuilder()
              .setLocation(LocationName.of(project, location).toString())
              .setQuery(query)
              .build();
      System.out.println("Search Features Response");
      for (Feature element :
          featurestoreServiceClient.searchFeatures(searchFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function searchFeatures() {
  // Configure the locationResource resource
  const locationResource = `projects/${project}/locations/${location}`;

  const request = {
    location: locationResource,
    query: query,
  };

  // Search Features request
  const [response] = await featurestoreServiceClient.searchFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('Search features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
searchFeatures();

Bahasa tambahan

Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Melihat detail fitur

Melihat detail fitur, seperti jenis nilai atau deskripsinya. Jika menggunakan Konsol Google Cloud dan mengaktifkan pemantauan fitur, Anda juga akan dapat melihat distribusi nilai fitur dari waktu ke waktu.

UI web

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.

    Buka halaman Fitur

  2. Pilih region dari menu drop-down Region.
  3. Dalam tabel fitur, lihat kolom Fitur untuk menemukan fitur yang ingin Anda lihat detailnya.
  4. Klik nama fitur untuk melihat detailnya.
  5. Untuk menampilkan metriknya, klik Metrik. Vertex AI Feature Store (Lama) menyediakan metrik distribusi fitur untuk fitur tersebut.

REST

Untuk mendapatkan detail fitur, kirim permintaan GET menggunakan metode featurestores.entityTypes.features.get.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.
  • FEATURESTORE_ID: ID featurestore.
  • ENTITY_TYPE_ID: ID jenis entity.
  • FEATURE_ID: ID fitur.

Metode HTTP dan URL:

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Jalankan perintah berikut:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

Jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID",
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE",
  "createTime": "2021-03-01T22:41:20.628493Z",
  "updateTime": "2021-03-01T22:41:20.628493Z",
  "labels": {
    "environment": "testing"
  },
  "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD",
  "monitoringConfig": {}
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.GetFeatureRequest;
import java.io.IOException;

public class GetFeatureSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    getFeatureSample(project, featurestoreId, entityTypeId, featureId, location, endpoint);
  }

  static void getFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint)
      throws IOException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      GetFeatureRequest getFeatureRequest =
          GetFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      Feature feature = featurestoreServiceClient.getFeature(getFeatureRequest);
      System.out.println("Get Feature Response");
      System.out.println(feature);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function getFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Get Feature request
  const [response] = await featurestoreServiceClient.getFeature(request, {
    timeout: Number(timeout),
  });

  console.log('Get feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
getFeature();

Bahasa tambahan

Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Menghapus fitur

Menghapus fitur beserta semua nilainya.

UI web

  1. Di bagian Vertex AI pada Konsol Google Cloud, buka halaman Features.

    Buka halaman Fitur

  2. Pilih region dari menu drop-down Region.
  3. Di tabel fitur, lihat kolom Fitur, lalu cari fitur yang akan dihapus.
  4. Klik nama fitur.
  5. Dari panel tindakan, klik Hapus.
  6. Klik Konfirmasi untuk menghapus fitur beserta nilainya.

REST

Untuk menghapus fitur, kirim permintaan DELETE menggunakan metode featurestores.entityTypes.features.delete.

Sebelum menggunakan data permintaan mana pun, lakukan penggantian berikut:

  • LOCATION_ID: Region tempat featurestore berada, seperti us-central1.
  • PROJECT_ID: Project ID Anda.
  • FEATURESTORE_ID: ID featurestore.
  • ENTITY_TYPE_ID: ID jenis entity.
  • FEATURE_ID: ID fitur.

Metode HTTP dan URL:

DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Jalankan perintah berikut:

curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

Jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Anda akan menerima respons JSON yang mirip seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-02-26T17:32:56.008325Z",
      "updateTime": "2021-02-26T17:32:56.008325Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Java Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DeleteFeatureRequest;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;

    deleteFeatureSample(
        project, featurestoreId, entityTypeId, featureId, location, endpoint, timeout);
  }

  static void deleteFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      DeleteFeatureRequest deleteFeatureRequest =
          DeleteFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          featurestoreServiceClient.deleteFeatureAsync(deleteFeatureRequest);
      System.out.format("Operation name: %s%n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(timeout, TimeUnit.SECONDS);
      System.out.format("Deleted Feature.");
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vertex AI menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat Dokumentasi referensi API Node.js Vertex AI.

Untuk melakukan autentikasi ke Vertex AI, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function deleteFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Delete Feature request
  const [operation] = await featurestoreServiceClient.deleteFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Delete feature response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
deleteFeature();

Bahasa tambahan

Untuk mempelajari cara menginstal dan menggunakan Vertex AI SDK untuk Python, lihat Menggunakan Vertex AI SDK untuk Python. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Vertex AI SDK untuk Python.

Langkah selanjutnya