Gérer et trouver des caractéristiques

Découvrez comment gérer et rechercher des caractéristiques.

Créer une caractéristique

Créez une caractéristique unique pour un type d'entité existant. Pour créer plusieurs caractéristiques dans une même requête, consultez la section Créer des caractéristiques par lot.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Sélectionnez une région dans la liste déroulante Région.
  3. Dans le tableau des caractéristiques, affichez la colonne Type d'entité et cliquez sur le type d'entité auquel ajouter des caractéristiques.
  4. Cliquez sur Ajouter des caractéristiques pour ouvrir le volet Ajouter des caractéristiques.
  5. Spécifiez le nom, le type de valeur et, éventuellement, la description de la caractéristique.
  6. Pour activer la surveillance des valeurs de caractéristiques (Aperçu), sous Surveillance des caractéristiques, sélectionnez Remplacer la configuration de surveillance des types d'entités, puis saisissez le nombre de jours entre les instantanés. Cette configuration remplace toutes les configurations de surveillance existantes ou futures sur le type d'entité de la caractéristique. Pour plus d'informations, consultez la page Surveillance des valeurs de fonctionnalités.
  7. Pour ajouter des caractéristiques, cliquez sur Ajouter une caractéristique.
  8. Cliquez sur Enregistrer.

REST

Pour créer une caractéristique pour un type d'entité existant, envoyez une requête POST à l'aide de la méthode featurestores.entityTypes.features.create.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • FEATURE_ID : ID de la caractéristique.
  • DESCRIPTION : description de la caractéristique.
  • VALUE_TYPE : type de valeur de la caractéristique.

Méthode HTTP et URL :

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID

Corps JSON de la requête :

{
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE"
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID?featureId=FEATURE_ID" | Select-Object -Expand Content

Des résultats semblables aux lignes suivantes devraient s'afficher : Vous pouvez utiliser OPERATION_ID dans la réponse pour obtenir l'état de l'opération.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.CreateFeatureOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Pour savoir comment installer ou mettre à jour le SDK Vertex AI pour Python, consultez la section Installer le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API Python.

from google.cloud import aiplatform


def create_feature_sample(
    project: str,
    location: str,
    feature_id: str,
    value_type: str,
    entity_type_id: str,
    featurestore_id: str,
):

    aiplatform.init(project=project, location=location)

    my_feature = aiplatform.Feature.create(
        feature_id=feature_id,
        value_type=value_type,
        entity_type_name=entity_type_id,
        featurestore_id=featurestore_id,
    )

    my_feature.wait()

    return my_feature

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.CreateFeatureOperationMetadata;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class CreateFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String description = "YOUR_FEATURE_DESCRIPTION";
    ValueType valueType = ValueType.STRING;
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 900;
    createFeatureSample(
        project,
        featurestoreId,
        entityTypeId,
        featureId,
        description,
        valueType,
        location,
        endpoint,
        timeout);
  }

  static void createFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String description,
      ValueType valueType,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      Feature feature =
          Feature.newBuilder().setDescription(description).setValueType(valueType).build();

      CreateFeatureRequest createFeatureRequest =
          CreateFeatureRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .setFeature(feature)
              .setFeatureId(featureId)
              .build();

      OperationFuture<Feature, CreateFeatureOperationMetadata> featureFuture =
          featurestoreServiceClient.createFeatureAsync(createFeatureRequest);
      System.out.format("Operation name: %s%n", featureFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      Feature featureResponse = featureFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Create Feature Response");
      System.out.format("Name: %s%n", featureResponse.getName());
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const valueType = 'FEATURE_VALUE_DATA_TYPE';
// const description = 'YOUR_ENTITY_TYPE_DESCRIPTION';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function createFeature() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const feature = {
    valueType: valueType,
    description: description,
  };

  const request = {
    parent: parent,
    feature: feature,
    featureId: featureId,
  };

  // Create Feature request
  const [operation] = await featurestoreServiceClient.createFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Create feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
createFeature();

Fonctionnalité de création de lots

Créez des caractéristiques de façon groupée pour un type existant. Pour les requêtes de création de lots, Vertex AI Feature Store (ancien) crée plusieurs caractéristiques à la fois, ce qui est plus rapide que la méthode featurestores.entityTypes.features.create pour en créer un grand nombre.

UI Web

Consultez la section Créer une caractéristique.

REST

Pour créer une ou plusieurs caractéristiques pour un type d'entité existant, envoyez une requête POST à l'aide de la méthode featurestores.entityTypes.features.batchCreate, comme indiqué dans l'exemple suivant.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • PARENT : nom de ressource du type d'entité sous lequel créer les caractéristiques. Format requis :
    projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID
  • FEATURE_ID : ID de la caractéristique.
  • DESCRIPTION : description de la caractéristique.
  • VALUE_TYPE : type de valeur de la caractéristique.
  • DURATION (facultatif) : durée de l'intervalle entre les instantanés, exprimée en secondes. La valeur doit se terminer par un "s".

Méthode HTTP et URL :

POST https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate

Corps JSON de la requête :

{
  "requests": [
    {
      "parent" : "PARENT_1",
      "feature": {
        "description": "DESCRIPTION_1",
        "valueType": "VALUE_TYPE_1",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_1"
    },
    {
      "parent" : "PARENT_2",
      "feature": {
        "description": "DESCRIPTION_2",
        "valueType": "VALUE_TYPE_2",
        "monitoringConfig": {
          "snapshotAnalysis": {
            "monitoringInterval": "DURATION"
          }
        }
      },
      "featureId": "FEATURE_ID_2"
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features:batchCreate" | Select-Object -Expand Content

Des résultats semblables aux lignes suivantes devraient s'afficher : Vous pouvez utiliser OPERATION_ID dans la réponse pour obtenir l'état de l'opération.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-03-02T00:04:13.039166Z",
      "updateTime": "2021-03-02T00:04:13.039166Z"
    }
  }
}

Python

Pour savoir comment installer ou mettre à jour le SDK Vertex AI pour Python, consultez la section Installer le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API Python.

from google.cloud import aiplatform


def batch_create_features_sample(
    project: str,
    location: str,
    entity_type_id: str,
    featurestore_id: str,
    sync: bool = True,
):

    aiplatform.init(project=project, location=location)

    my_entity_type = aiplatform.featurestore.EntityType(
        entity_type_name=entity_type_id, featurestore_id=featurestore_id
    )

    FEATURE_CONFIGS = {
        "age": {"value_type": "INT64", "description": "User age"},
        "gender": {"value_type": "STRING", "description": "User gender"},
        "liked_genres": {
            "value_type": "STRING_ARRAY",
            "description": "An array of genres this user liked",
        },
    }

    my_entity_type.batch_create_features(feature_configs=FEATURE_CONFIGS, sync=sync)

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesOperationMetadata;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesRequest;
import com.google.cloud.aiplatform.v1.BatchCreateFeaturesResponse;
import com.google.cloud.aiplatform.v1.CreateFeatureRequest;
import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.Feature.ValueType;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchCreateFeaturesSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;
    batchCreateFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint, timeout);
  }

  static void batchCreateFeaturesSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      List<CreateFeatureRequest> createFeatureRequests = new ArrayList<>();

      Feature titleFeature =
          Feature.newBuilder()
              .setDescription("The title of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature genresFeature =
          Feature.newBuilder()
              .setDescription("The genres of the movie")
              .setValueType(ValueType.STRING)
              .build();
      Feature averageRatingFeature =
          Feature.newBuilder()
              .setDescription("The average rating for the movie, range is [1.0-5.0]")
              .setValueType(ValueType.DOUBLE)
              .build();

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder().setFeature(titleFeature).setFeatureId("title").build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(genresFeature)
              .setFeatureId("genres")
              .build());

      createFeatureRequests.add(
          CreateFeatureRequest.newBuilder()
              .setFeature(averageRatingFeature)
              .setFeatureId("average_rating")
              .build());

      BatchCreateFeaturesRequest batchCreateFeaturesRequest =
          BatchCreateFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .addAllRequests(createFeatureRequests)
              .build();

      OperationFuture<BatchCreateFeaturesResponse, BatchCreateFeaturesOperationMetadata>
          batchCreateFeaturesFuture =
              featurestoreServiceClient.batchCreateFeaturesAsync(batchCreateFeaturesRequest);
      System.out.format(
          "Operation name: %s%n", batchCreateFeaturesFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      BatchCreateFeaturesResponse batchCreateFeaturesResponse =
          batchCreateFeaturesFuture.get(timeout, TimeUnit.SECONDS);
      System.out.println("Batch Create Features Response");
      System.out.println(batchCreateFeaturesResponse);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function batchCreateFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const ageFeature = {
    valueType: 'INT64',
    description: 'User age',
  };

  const ageFeatureRequest = {
    feature: ageFeature,
    featureId: 'age',
  };

  const genderFeature = {
    valueType: 'STRING',
    description: 'User gender',
  };

  const genderFeatureRequest = {
    feature: genderFeature,
    featureId: 'gender',
  };

  const likedGenresFeature = {
    valueType: 'STRING_ARRAY',
    description: 'An array of genres that this user liked',
  };

  const likedGenresFeatureRequest = {
    feature: likedGenresFeature,
    featureId: 'liked_genres',
  };

  const requests = [
    ageFeatureRequest,
    genderFeatureRequest,
    likedGenresFeatureRequest,
  ];

  const request = {
    parent: parent,
    requests: requests,
  };

  // Batch Create Features request
  const [operation] = await featurestoreServiceClient.batchCreateFeatures(
    request,
    {timeout: Number(timeout)}
  );
  const [response] = await operation.promise();

  console.log('Batch create features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
batchCreateFeatures();

Répertorier des fonctionnalités

Répertoriez toutes les caractéristiques d'un emplacement donné. Pour rechercher des caractéristiques dans tous les types d'entités et magasins de caractéristiques d'un emplacement donné, consultez la méthode de la section Rechercher des caractéristiques.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Sélectionnez une région dans la liste déroulante Région.
  3. Dans la table des caractéristiques, affichez la colonne Caractéristiques pour afficher les caractéristiques de votre projet dans la région sélectionnée.

REST

Pour répertorier toutes les caractéristiques d'un seul type d'entité, envoyez une requête GET à l'aide de la méthode featurestores.entityTypes.features.list.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.

Méthode HTTP et URL :

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Exécutez la commande suivante :

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features"

PowerShell

Exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_1",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.626644Z",
      "updateTime": "2021-03-01T22:41:20.626644Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yP0qJeLao6P3fl9cKEGY4ie5-SanQaiN7c_Ca4QOa0u7AxwO6i75Vbp0Cr51MSf"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_2",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-02-25T01:27:00.544230Z",
      "updateTime": "2021-02-25T01:27:00.544230Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yMdrLZ7Waty0ane-DkHq4kcsIVC-piqJq7n6A_Y-BjNzPY4rNlokDHNyUqC7edw"
    },
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID_3",
      "description": "DESCRIPTION",
      "valueType": "VALUE_TYPE",
      "createTime": "2021-03-01T22:41:20.628493Z",
      "updateTime": "2021-03-01T22:41:20.628493Z",
      "labels": {
        "environment": "testing"
      },
      "etag": "AMEw9yM-sAkv-u-jzkUOToaAVovK7GKbrubd9DbmAonik-ojTWG8-hfSRYt6jHKRTQ35"
    }
  ]
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.EntityTypeName;
import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.ListFeaturesRequest;
import java.io.IOException;

public class ListFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    listFeaturesSample(project, featurestoreId, entityTypeId, location, endpoint);
  }

  static void listFeaturesSample(
      String project, String featurestoreId, String entityTypeId, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      ListFeaturesRequest listFeaturesRequest =
          ListFeaturesRequest.newBuilder()
              .setParent(
                  EntityTypeName.of(project, location, featurestoreId, entityTypeId).toString())
              .build();
      System.out.println("List Features Response");
      for (Feature element :
          featurestoreServiceClient.listFeatures(listFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function listFeatures() {
  // Configure the parent resource
  const parent = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}`;

  const request = {
    parent: parent,
  };

  // List Features request
  const [response] = await featurestoreServiceClient.listFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('List features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
listFeatures();

Langages supplémentaires

Pour savoir comment installer et utiliser le SDK Vertex AI pour Python, consultez la page Utiliser le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.

Recherche de fonctionnalités

Recherchez des caractéristiques en fonction d'une ou de plusieurs de leurs propriétés, telles que l'ID de la caractéristique, l'ID du type d'entité ou la description de la caractéristique. Vertex AI Feature Store (ancien) effectue la recherche dans tous les magasins de caractéristiques et types d'entités d'un emplacement donné. Vous pouvez également limiter les résultats en filtrant des magasins de caractéristiques, des types de valeur et des étiquettes spécifiques.

Pour répertorier toutes les caractéristiques, consultez la section Répertorier les caractéristiques.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Sélectionnez une région dans la liste déroulante Région.
  3. Cliquez sur le champ Filtre de la table des caractéristiques.
  4. Sélectionnez une propriété à filtrer, telle que Caractéristique, qui renvoie les caractéristiques dont l'ID contient une chaîne correspondante.
  5. Saisissez la valeur du filtre, puis appuyez sur "Entrée". Vertex AI Feature Store (ancien) renvoie les résultats dans la table des caractéristiques.
  6. Pour ajouter des filtres, cliquez à nouveau sur le champ Filtre.

REST

Pour rechercher des caractéristiques, envoyez une requête GET à l'aide de la méthode featurestores.searchFeatures. L'exemple suivant utilise plusieurs paramètres de recherche au format featureId:test AND valueType=STRING. La requête renvoie les caractéristiques dont l'ID contient test et dont les valeurs sont de type STRING.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.

Méthode HTTP et URL :

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Exécutez la commande suivante :

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING""

PowerShell

Exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores:searchFeatures?query="featureId:test%20AND%20valueType=STRING"" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "features": [
    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_IDfeature-delete.html/featurestores/featurestore_demo/entityTypes/testing/features/test1",
      "description": "featurestore test1",
      "createTime": "2021-02-26T18:16:09.528185Z",
      "updateTime": "2021-02-26T18:16:09.528185Z",
      "labels": {
        "environment": "testing"
      }
    }
  ]
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.SearchFeaturesRequest;
import java.io.IOException;

public class SearchFeaturesSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String query = "YOUR_QUERY";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    searchFeaturesSample(project, query, location, endpoint);
  }

  static void searchFeaturesSample(String project, String query, String location, String endpoint)
      throws IOException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      SearchFeaturesRequest searchFeaturesRequest =
          SearchFeaturesRequest.newBuilder()
              .setLocation(LocationName.of(project, location).toString())
              .setQuery(query)
              .build();
      System.out.println("Search Features Response");
      for (Feature element :
          featurestoreServiceClient.searchFeatures(searchFeaturesRequest).iterateAll()) {
        System.out.println(element);
      }
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function searchFeatures() {
  // Configure the locationResource resource
  const locationResource = `projects/${project}/locations/${location}`;

  const request = {
    location: locationResource,
    query: query,
  };

  // Search Features request
  const [response] = await featurestoreServiceClient.searchFeatures(request, {
    timeout: Number(timeout),
  });

  console.log('Search features response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
searchFeatures();

Langages supplémentaires

Pour savoir comment installer et utiliser le SDK Vertex AI pour Python, consultez la page Utiliser le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.

View feature details

Affichez les détails d'une caractéristique, tels que son type de valeur ou sa description. Si vous utilisez la console Google Cloud et que la surveillance des caractéristiques est activée, vous pouvez également afficher la distribution des valeurs des caractéristiques au fil du temps.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Sélectionnez une région dans la liste déroulante Région.
  3. Dans la table des caractéristiques, affichez la colonne Caractéristiques pour rechercher la caractéristique dont vous souhaitez afficher les détails.
  4. Cliquez sur le nom d'une caractéristique pour en afficher les détails.
  5. Pour afficher ses métriques, cliquez sur Métriques. Vertex AI Feature Store (ancien) fournit des métriques de distribution des caractéristiques pour la caractéristique.

REST

Pour obtenir des détails sur une caractéristique, envoyez une requête GET à l'aide de la méthode featurestores.entityTypes.features.get.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • FEATURE_ID : ID de la caractéristique.

Méthode HTTP et URL :

GET https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Exécutez la commande suivante :

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

Exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID",
  "description": "DESCRIPTION",
  "valueType": "VALUE_TYPE",
  "createTime": "2021-03-01T22:41:20.628493Z",
  "updateTime": "2021-03-01T22:41:20.628493Z",
  "labels": {
    "environment": "testing"
  },
  "etag": "AMEw9yOZbdYKHTyjV22ziZR1vUX3nWOi0o2XU3-OADahSdfZ8Apklk_qPruhF-o1dOSD",
  "monitoringConfig": {}
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.Feature;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.cloud.aiplatform.v1.GetFeatureRequest;
import java.io.IOException;

public class GetFeatureSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";

    getFeatureSample(project, featurestoreId, entityTypeId, featureId, location, endpoint);
  }

  static void getFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint)
      throws IOException {

    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      GetFeatureRequest getFeatureRequest =
          GetFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      Feature feature = featurestoreServiceClient.getFeature(getFeatureRequest);
      System.out.println("Get Feature Response");
      System.out.println(feature);
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function getFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Get Feature request
  const [response] = await featurestoreServiceClient.getFeature(request, {
    timeout: Number(timeout),
  });

  console.log('Get feature response');
  console.log(`Name : ${response.name}`);
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
getFeature();

Langages supplémentaires

Pour savoir comment installer et utiliser le SDK Vertex AI pour Python, consultez la page Utiliser le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.

Supprimer une caractéristique

Supprimez une caractéristique et toutes ses valeurs.

UI Web

  1. Dans la section "Vertex AI" de Google Cloud Console, accédez à la page Caractéristiques.

    Accéder à la page "Caractéristiques"

  2. Sélectionnez une région dans la liste déroulante Région.
  3. Dans la table des caractéristiques, affichez la colonne Caractéristique et recherchez la caractéristique à supprimer.
  4. Cliquez sur le nom de la caractéristique.
  5. Dans la barre d'action, cliquez sur Supprimer.
  6. Cliquez sur Confirmer pour supprimer la caractéristique et ses valeurs.

REST

Pour supprimer une caractéristique, envoyez une requête DELETE à l'aide de la méthode featurestores.entityTypes.features.delete.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • LOCATION_ID : région où se trouve le featurestore, par exemple us-central1.
  • PROJECT_ID : l'ID de votre projet.
  • FEATURESTORE_ID : ID du featurestore.
  • ENTITY_TYPE_ID : ID du type d'entité.
  • FEATURE_ID : ID de la caractéristique.

Méthode HTTP et URL :

DELETE https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Exécutez la commande suivante :

curl -X DELETE \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID"

PowerShell

Exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method DELETE `
-Headers $headers `
-Uri "https://LOCATION_ID-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/entityTypes/ENTITY_TYPE_ID/features/FEATURE_ID" | Select-Object -Expand Content

Vous devriez recevoir une réponse JSON de ce type :

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/featurestores/FEATURESTORE_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.aiplatform.v1.DeleteOperationMetadata",
    "genericMetadata": {
      "createTime": "2021-02-26T17:32:56.008325Z",
      "updateTime": "2021-02-26T17:32:56.008325Z"
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.aiplatform.v1.DeleteFeatureRequest;
import com.google.cloud.aiplatform.v1.DeleteOperationMetadata;
import com.google.cloud.aiplatform.v1.FeatureName;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceClient;
import com.google.cloud.aiplatform.v1.FeaturestoreServiceSettings;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class DeleteFeatureSample {

  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String featurestoreId = "YOUR_FEATURESTORE_ID";
    String entityTypeId = "YOUR_ENTITY_TYPE_ID";
    String featureId = "YOUR_FEATURE_ID";
    String location = "us-central1";
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    int timeout = 300;

    deleteFeatureSample(
        project, featurestoreId, entityTypeId, featureId, location, endpoint, timeout);
  }

  static void deleteFeatureSample(
      String project,
      String featurestoreId,
      String entityTypeId,
      String featureId,
      String location,
      String endpoint,
      int timeout)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    FeaturestoreServiceSettings featurestoreServiceSettings =
        FeaturestoreServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (FeaturestoreServiceClient featurestoreServiceClient =
        FeaturestoreServiceClient.create(featurestoreServiceSettings)) {

      DeleteFeatureRequest deleteFeatureRequest =
          DeleteFeatureRequest.newBuilder()
              .setName(
                  FeatureName.of(project, location, featurestoreId, entityTypeId, featureId)
                      .toString())
              .build();

      OperationFuture<Empty, DeleteOperationMetadata> operationFuture =
          featurestoreServiceClient.deleteFeatureAsync(deleteFeatureRequest);
      System.out.format("Operation name: %s%n", operationFuture.getInitialFuture().get().getName());
      System.out.println("Waiting for operation to finish...");
      operationFuture.get(timeout, TimeUnit.SECONDS);
      System.out.format("Deleted Feature.");
      featurestoreServiceClient.close();
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Node.js.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */

// const project = 'YOUR_PROJECT_ID';
// const featurestoreId = 'YOUR_FEATURESTORE_ID';
// const entityTypeId = 'YOUR_ENTITY_TYPE_ID';
// const featureId = 'YOUR_FEATURE_ID';
// const location = 'YOUR_PROJECT_LOCATION';
// const apiEndpoint = 'YOUR_API_ENDPOINT';
// const timeout = <TIMEOUT_IN_MILLI_SECONDS>;

// Imports the Google Cloud Featurestore Service Client library
const {FeaturestoreServiceClient} = require('@google-cloud/aiplatform').v1;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: apiEndpoint,
};

// Instantiates a client
const featurestoreServiceClient = new FeaturestoreServiceClient(
  clientOptions
);

async function deleteFeature() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/featurestores/${featurestoreId}/entityTypes/${entityTypeId}/features/${featureId}`;

  const request = {
    name: name,
  };

  // Delete Feature request
  const [operation] = await featurestoreServiceClient.deleteFeature(request, {
    timeout: Number(timeout),
  });
  const [response] = await operation.promise();

  console.log('Delete feature response');
  console.log('Raw response:');
  console.log(JSON.stringify(response, null, 2));
}
deleteFeature();

Langages supplémentaires

Pour savoir comment installer et utiliser le SDK Vertex AI pour Python, consultez la page Utiliser le SDK Vertex AI pour Python. Pour en savoir plus, consultez la documentation de référence de l'API SDK Vertex AI pour Python.

Étapes suivantes