Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Skrip pelatihan Anda harus dikonfigurasi untuk menulis log TensorBoard. Bagi pengguna lama TensorBoard, hal ini tidak memerlukan perubahan pada kode pelatihan model Anda.
Untuk mengonfigurasi skrip pelatihan di TensorFlow 2.x, buat callback
TensorBoard dan tetapkan variabel log_dir ke lokasi apa pun
yang dapat terhubung ke Google Cloud.
Callback TensorBoard kemudian disertakan dalam daftar callback model.fit
TensorFlow.
Log TensorBoard dibuat di direktori yang ditentukan dan dapat
diupload ke eksperimen Vertex AI TensorBoard dengan mengikuti
petunjuk
Mengupload Log TensorBoard
untuk mengupload.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],["Terakhir diperbarui pada 2025-09-10 UTC."],[],[],null,["# Configure your training script\n\nYour training script must be configured to write\nTensorBoard logs. For existing TensorBoard users, this requires no change to\nyour model training code.\n\nTo configure your training script in TensorFlow 2.x, create a\nTensorBoard callback and set the `log_dir` variable to any location\nwhich can connect to Google Cloud.\n\nThe TensorBoard callback is then included in the TensorFlow `model.fit`\ncallbacks list. \n\n import tensorflow as tf\n\n def train_tensorflow_model_with_tensorboard(log_dir):\n (x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()\n x_train, x_test = x_train / 255.0, x_test / 255.0\n\n def create_model():\n return tf.keras.models.Sequential(\n [\n tf.keras.layers.Flatten(input_shape=(28, 28)),\n tf.keras.layers.Dense(512, activation=\"relu\"),\n ]\n )\n\n model = create_model()\n model.compile(\n optimizer=\"adam\",\n loss=\"sparse_categorical_crossentropy\",\n metrics=[\"accuracy\"]\n )\n\n tensorboard_callback = tf.keras.callbacks.TensorBoard(\n log_dir=log_dir,\n histogram_freq=1\n )\n\n model.fit(\n x=x_train,\n y=y_train,\n epochs=5,\n validation_data=(x_test, y_test),\n callbacks=[tensorboard_callback],\n )\n\nThe TensorBoard logs are created in the specified directory and can be\nuploaded to a Vertex AI TensorBoard experiment by following\nthe\n[Upload TensorBoard Logs](/vertex-ai/docs/experiments/tensorboard-upload-existing-logs#one-time-logging)\ninstructions for uploading.\n\nFor more examples, see the [TensorBoard open source docs](https://www.tensorflow.org/tensorboard/get_started)\n\nWhat's next\n-----------\n\n- Check out automatic log streaming\n - [Train using a custom training job](/vertex-ai/docs/experiments/tensorboard-training)\n - [Train using Vertex AI Pipelines](/vertex-ai/docs/experiments/tensorboard-with-pipelines)"]]