BigQuery ML 또는 XGBoost와 같은 다른 플랫폼에서 학습된 모델을 가져올 수도 있습니다.
맞춤 학습된 모델을 Vertex AI Model Registry에 등록할 수 있습니다.
Vertex AI 외부에서 학습된 모델을 가져와 Vertex AI Model Registry에 등록할 수도 있습니다. AutoML 모델은 등록할 필요가 없습니다. 생성 시 자동으로 등록됩니다.
레지스트리에서 모델 버전을 관리하고, 온라인 예측을 위해 엔드포인트에 배포하고, 모델 평가를 수행하고, Vertex AI Model Monitoring으로 배포를 모니터링하고, Vertex Explainable AI를 사용할 수 있습니다.
BigQuery는 머신러닝, 지리정보 분석, 비즈니스 인텔리전스와 같은 기본 제공 기능으로 데이터를 관리하고 분석할 수 있게 해주는 완전 관리형 엔터프라이즈 데이터 웨어하우스입니다.
BigQuery 테이블은 SQL로 쿼리할 수 있으며, 주로 SQL을 사용하는 데이터 과학자는 코드 몇 줄만으로 대규모 쿼리를 실행할 수 있습니다.
BigQuery를 Vertex AI에서 테이블 형식 및 커스텀 모델을 빌드할 때 참조하는 데이터 스토어로 사용할 수도 있습니다. BigQuery를 데이터 스토어로 사용하는 방법에 대한 자세한 내용은 BigQuery 스토리지 개요를 참조하세요.
BigQuery ML을 사용하면 BigQuery에서 모델을 개발하고 호출할 수 있습니다. BigQuery ML을 사용하면 데이터를 이동하거나 기본 학습 인프라에 관해 걱정할 필요 없이 SQL을 사용하여 BigQuery에서 직접 ML 모델을 학습시킬 수 있습니다. BigQuery ML 모델에 대한 일괄 예측을 만들어 BigQuery 데이터에서 유용한 정보를 얻을 수 있습니다.
BigQuery ML을 사용하여 Vertex AI 모델에 액세스할 수도 있습니다. Gemini와 같은 Vertex AI 내장 모델 또는 Vertex AI 맞춤 모델을 통해 BigQuery ML 원격 모델을 만들 수 있습니다. 다른 BigQuery ML 모델과 마찬가지로 BigQuery에서 SQL을 사용하여 원격 모델과 상호작용하지만 원격 모델의 모든 학습과 추론은 Vertex AI에서 처리됩니다.
Vertex AI에서 모델을 관리하려면 BigQuery ML 모델을 Model Registry에 등록하면 됩니다. Vertex AI에서 BigQuery ML 모델을 관리하면 다음과 같은 두 가지 주요 이점이 있습니다.
온라인 모델 서빙: BigQuery ML은 모델에 대한 일괄 예측만 지원합니다. 온라인 예측을 수행하려면 BigQuery ML에서 모델을 학습시키고 Vertex AI Model Registry를 통해 Vertex AI 엔드포인트에 배포하면 됩니다.
MLOps 기능: 모델은 지속적인 학습을 통해 최신 상태로 유지될 때 가장 유용합니다. Vertex AI는 시간 경과에 따른 예측 정확성을 유지하기 위해 모델의 모니터링 및 재학습을 자동화하는 MLOps 도구를 제공합니다. Vertex AI Pipelines를 사용하면 BigQuery 연산자를 사용하여 모든 BigQuery 작업(BigQuery ML 포함)을 ML 파이프라인에 연결할 수 있습니다. Vertex AI 모델 모니터링을 사용하면 시간 경과에 따른 BigQuery ML 예측을 모니터링할 수 있습니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],["최종 업데이트: 2025-09-04(UTC)"],[],[],null,["# Vertex AI for BigQuery users\n\nUse this page to understand the differences between Vertex AI and\n[BigQuery](/bigquery/docs/introduction) and learn how you can integrate\nVertex AI with your existing BigQuery workflows.\nVertex AI and BigQuery work together to meet your machine\nlearning and MLOps use cases.\n\nTo learn more about model training differences between Vertex AI and\nBigQuery,\nsee [Choose a training method](/vertex-ai/docs/start/training-methods).\n\nDifferences between Vertex AI and BigQuery\n------------------------------------------\n\nThis section covers the Vertex AI, BigQuery, and\nBigQuery ML services.\n\n### Vertex AI: An end-to-end AI/ML platform\n\nVertex AI is an AI/ML platform for model development\nand governance. Common use cases include the following:\n\n- Machine learning tasks, such as forecasting, prediction, recommendation, and anomaly detection\n- Generative AI tasks, such as:\n\n - Text generation, classification, summarization, and extraction\n - Code generation and completion\n - Image generation\n - Embedding generation\n\nYou can use BigQuery to prepare training data for\nVertex AI models, which you can\n[make available as features in Vertex AI Feature Store](/vertex-ai/docs/featurestore/latest/sync-data).\n\nYou can train models in Vertex AI in three ways:\n\n- [AutoML](/vertex-ai/docs/beginner/beginners-guide): Train models on image, tabular, and video datasets without writing code.\n- [Custom Training](/vertex-ai/docs/training/understanding-training-service): Run custom training code catered to your specific use case.\n- [Ray on Vertex AI](/vertex-ai/docs/open-source/ray-on-vertex-ai/overview): Use Ray to scale AI and Python applications like machine learning.\n\nYou can also import a model trained on another platform like\nBigQuery ML or XGBoost.\n\nYou can register custom-trained models to the\n[Vertex AI Model Registry](/vertex-ai/docs/model-registry/introduction).\nYou can also import models trained outside of Vertex AI and register them\nto Vertex AI Model Registry. You don't need to register\nAutoML models; they are registered automatically at creation\ntime.\n\nFrom the registry, you can manage model\nversions, deploy to endpoints for online predictions, perform model\nevaluations, monitor deployments with Vertex AI Model Monitoring, and\nuse [Vertex Explainable AI](/vertex-ai/docs/explainable-ai/overview).\n\n**Available languages:**\n\n- The [Vertex AI SDK](/vertex-ai/docs/python-sdk/use-vertex-ai-sdk) supports Python, Java, Node.js, and Go.\n\n### BigQuery: A serverless, multicloud enterprise data warehouse\n\n[BigQuery](/bigquery/docs/introduction) is a fully managed enterprise\ndata warehouse that helps you manage and analyze your data with built-in features\nlike machine learning, geospatial analysis, and business intelligence.\nBigQuery tables can be queried by SQL, and data scientists who primarily\nuse SQL can run large queries with only a few lines of code.\n\nYou can also use BigQuery as a data store that you reference when\nbuilding tabular and custom models in Vertex AI. To learn more about\nusing BigQuery as a data store, see [Overview of BigQuery\nstorage](/bigquery/docs/storage_overview).\n\n**Available languages:**\n\n- SDKs for BigQuery. To learn more, see the [BigQuery API Client Libraries](/bigquery/docs/reference/libraries).\n- GoogleSQL\n- Legacy SQL\n\nTo learn more, see [BigQuery SQL dialects](/bigquery/docs/reference/standard-sql/introduction#bigquery-sql-dialects).\n\n### BigQuery ML: Machine learning directly in BigQuery\n\nBigQuery ML lets you develop and invoke models in\nBigQuery. With BigQuery ML, you can use SQL to\ntrain ML models directly in BigQuery without needing to move\ndata or worry about the underlying training infrastructure. You can create\nbatch predictions for BigQuery ML models to gain insights from\nyour BigQuery data.\n\nYou can also access Vertex AI models by using\nBigQuery ML. You can create a BigQuery ML\nremote model over a\n[Vertex AI built-in model](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-remote-model) like Gemini,\nor over a\n[Vertex AI custom model](/bigquery/docs/reference/standard-sql/bigqueryml-syntax-create-remote-model-https). You interact with the remote model using\nSQL in BigQuery, just like any other BigQuery ML\nmodel, but all training and inference for the remote model is processed in\nVertex AI.\n\n**Available language:**\n\n- GoogleSQL\n- [BigQuery client libraries](/bigquery/docs/reference/libraries)\n\nTo learn more about the advantages of using BigQuery ML, see\n[Introduction to AI and ML in BigQuery](/bigquery/docs/bqml-introduction).\n\nBenefits of managing BigQuery ML models in Vertex AI\n----------------------------------------------------\n\nYou can register your BigQuery ML models to the\nModel Registry in order to manage the models in\nVertex AI. Managing BigQuery ML models in\nVertex AI provides two main benefits:\n\n- **Online model serving**: BigQuery ML only supports batch predictions\n for your models. To get online predictions, you can train your models in\n BigQuery ML and deploy them to Vertex AI endpoints through\n Vertex AI Model Registry.\n\n- **MLOps capabilities**: Models are most beneficial when they are kept up to\n date through continuous training. Vertex AI offers MLOps tools that\n automate the monitoring and retraining of models to maintain the accuracy\n of predictions over time. With Vertex AI Pipelines, you can use\n BigQuery operators to plug any BigQuery jobs (including\n BigQuery ML) into an ML pipeline. With\n Vertex AI Model Monitoring, you can monitor your BigQuery ML\n predictions over time.\n\nTo learn how to register your BigQuery ML models to the Model Registry,\nsee [Manage BigQuery ML models with Vertex AI](/bigquery-ml/docs/managing-models-vertex).\n\nRelated notebook tutorials\n--------------------------\n\nWhat's next\n-----------\n\n- To get started with Vertex AI see:\n - [Choose a training method](/vertex-ai/docs/start/training-methods)\n - [Integrate a BigQuery ML model with Model Registry](/vertex-ai/docs/model-registry/model-registry-bqml)"]]