Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Nesta página, descrevemos como autenticar chamadas para serviços da Vertex AI no Google Distributed Cloud (GDC) isolado. É necessário configurar a autenticação de token para proteger suas solicitações à API Vertex AI nos aplicativos isolados. Esse processo valida suas solicitações de API fornecendo sua identidade e autorizando suas interações.
Esta página é para desenvolvedores de aplicativos em grupos de operadores de aplicativos responsáveis por configurar os ambientes de desenvolvimento e de aplicativos para ativar recursos de IA. Para mais informações, consulte Públicos-alvo para documentação isolada do GDC.
Atualize o repositório de confiança local antes de configurar a autenticação no ambiente de desenvolvimento.
Autenticar nos serviços da Vertex AI
As interações com os serviços da Vertex AI são feitas por tokens de autenticação. Os tokens são objetos digitais que verificam sua identidade e autorização depois que você fornece credenciais válidas. O token contém informações específicas sobre sua conta e as permissões que ela tem para acessar e operar com serviços e recursos.
Conceda à sua conta de usuário o papel correspondente listado em Preparar permissões do IAM para ter acesso ao serviço da Vertex AI ou ao modelo de IA generativa que você quer usar.
Faça login no Distributed Cloud com a conta de usuário que você precisa para interagir com a API:
Dependendo do uso pretendido do token de autenticação, talvez seja necessário incluir a porta após o endpoint do serviço no caminho de públicos-alvo da seguinte maneira:
Se você usar uma biblioteca de cliente para sua solicitação, inclua a porta :443 após o endpoint do serviço no caminho de públicos-alvo. Portanto, o caminho --audiences no comando precisa ser https://ENDPOINT:443.
Se você usar gRPC, curl ou chamadas REST programáticas para sua solicitação, não inclua a porta. Portanto, o caminho --audiences no comando precisa ser https://ENDPOINT.
A saída mostra o token de autenticação. Adicione o token ao cabeçalho das solicitações de linha de comando que você fizer, como no exemplo a seguir:
-H"Authorization: Bearer TOKEN"
Substitua TOKEN pelo valor do token de autenticação que a saída mostra.
Autenticar com sua conta de serviço
Os guias a seguir mostram como conseguir um token de autenticação para sua conta de serviço:
Configure a conta de serviço que você quer usar para acessar o serviço da Vertex AI ou o modelo de IA generativa.
Conceda à conta de serviço o papel correspondente listado em Preparar permissões do IAM para que ela tenha acesso ao serviço ou modelo que você quer usar.
Substitua PATH_TO_SERVICE_KEY pelo caminho do arquivo JSON que contém os pares de chaves da sua conta de serviço.
Instale a biblioteca de cliente google-auth:
pipinstallgoogle-auth
Adicione o seguinte código a um script Python:
importosimportgoogle.authfromgoogle.auth.transportimportrequestsimportrequestsasreqsos.environ["GOOGLE_APPLICATION_CREDENTIALS"]="PATH_TO_SERVICE_KEY"os.environ["GRPC_DEFAULT_SSL_ROOTS_FILE_PATH"]="CERT_NAME"# If you use a client library for your request,# you must include port :443 after the service endpoint# in the audience path.audience="https://ENDPOINT"creds,project_id=google.auth.default()print(project_id)creds=creds.with_gdch_audience(audience)deftest_get_token():sesh=reqs.Session()req=requests.Request(session=sesh)creds.refresh(req)print(creds.token)if__name__=="__main__":test_get_token()
Substitua:
PATH_TO_SERVICE_KEY: o caminho para o arquivo JSON que contém os pares de chaves da sua conta de serviço.
CERT_NAME: o nome do arquivo de certificado da autoridade de certificação (CA), como org-1-trust-bundle-ca.cert. Você só precisa desse valor se estiver em um ambiente de desenvolvimento. Caso contrário, omita.
ENDPOINT: o endpoint de API que você usa na sua organização. Para mais informações, consulte o status do serviço e os endpoints. Dependendo do uso pretendido do token de autenticação, talvez seja necessário incluir a porta após o endpoint do serviço no caminho do público-alvo da seguinte maneira:
Se você usar uma biblioteca de cliente para sua solicitação, inclua a porta :443 após o endpoint do serviço no caminho do público-alvo. Portanto, o caminho audience no script precisa ser "https://ENDPOINT:443".
Se você usar gRPC, curl ou chamadas REST programáticas para sua solicitação, não inclua a porta. Portanto, o caminho audience no script precisa ser "https://ENDPOINT".
Salve o script Python.
Execute o script Python para buscar o token:
pythonSCRIPT_NAME
Substitua SCRIPT_NAME pelo nome que você deu ao script do Python, como token.py.
A saída mostra o token de autenticação. Adicione o token ao cabeçalho das solicitações de linha de comando que você fizer, como no exemplo a seguir:
-H"Authorization: Bearer TOKEN"
Substitua TOKEN pelo valor do token de autenticação que a saída mostra.
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[[["\u003cp\u003eThis guide details the process of obtaining authentication tokens for accessing Vertex AI APIs on Google Distributed Cloud (GDC) air-gapped.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication can be performed using either a user account or a service account, each with its own distinct set of steps.\u003c/p\u003e\n"],["\u003cp\u003eTo obtain a user account token, you must log in to Distributed Cloud and run a command that includes the relevant service endpoint.\u003c/p\u003e\n"],["\u003cp\u003eTo obtain a service account token, you'll use a python script that sets the relevant environmental variables and uses the \u003ccode\u003egoogle-auth\u003c/code\u003e client library, referencing the service key and relevant endpoint.\u003c/p\u003e\n"],["\u003cp\u003eThe obtained authentication token is then added to the header of your API requests as an authorization bearer token.\u003c/p\u003e\n"]]],[],null,["# Authenticate Vertex AI API requests\n\nThis page describes how to authenticate calls to Vertex AI services on Google Distributed Cloud (GDC) air-gapped. You must set up token authentication to secure your requests to the Vertex AI API within your air-gapped applications. This process validates your API requests by providing your identity and authorizing your interactions.\n\n\u003cbr /\u003e\n\nThis page is for application developers within application operator groups responsible for setting up their application and development environments to enable AI features. For more information, see [Audiences for GDC air-gapped documentation](/distributed-cloud/hosted/docs/latest/gdch/resources/audiences).\n\nBefore you begin\n----------------\n\nYou must have your project set up for Vertex AI. For more information, see [Set up a project for Vertex AI](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-set-up-project).\n\n- Make sure to update your local trust store before you set up authentication in your development environment.\n\nAuthenticating to Vertex AI services\n------------------------------------\n\nInteractions with Vertex AI services are done through authentication tokens. Tokens are digital objects that verify your identity and authorization after you provide valid credentials. The token carries specific information about your account and the permissions it has to access and operate with services and resources.\n\nThere are two ways you can set up authentication:\n\n- [Authenticate with your user account](#authenticate-with-user-account)\n- [Authenticate with your service account](#authenticate-with-service-account)\n\n### Authenticate with your user account\n\nThe following guides you through getting an authentication token for your user account:\n\n1. Note [the endpoint of the API](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-api-status) you want to use.\n\n2. Gain access to the Vertex AI service or Generative AI model you want to use by granting your user account the corresponding role listed in [Prepare IAM permissions](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-ao-permissions).\n\n3. Sign in to Distributed Cloud with the user account you have to interact with the API:\n\n gdcloud auth login\n\n4. Get the authentication token:\n\n gdcloud auth print-identity-token --audiences=https://\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e\n\n Replace \u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e with the API endpoint that you use for your organization. For more information, [view service status and endpoints](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-api-status).\n\n Depending on the intended use of the authentication token, you might need to include the port after the service endpoint in the audiences path as follows:\n - If you use a [client library](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-install-libraries) for your request, you must include port `:443` after the service endpoint in the audiences path. Therefore, the `--audiences` path in the command must be `https://`\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e`:443`.\n - If you use gRPC, `curl`, or programmatic REST calls for your request, don't include the port. Therefore, the `--audiences` path in the command must be `https://`\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e.\n\n The output displays the authentication token. Add the token to the header of the command-line requests you make, as in the following example: \n\n -H \"Authorization: Bearer \u003cvar translate=\"no\"\u003eTOKEN\u003c/var\u003e\"\n\n Replace \u003cvar translate=\"no\"\u003eTOKEN\u003c/var\u003e with the value for the authentication token that the output displays.\n\n### Authenticate with your service account\n\nThe following guides you through getting an authentication token for your service account:\n\n1. Note [the endpoint of the API](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-api-status) you want to use.\n\n2. [Set up the service account](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-set-up-project#set-up-service) you want to use to access the Vertex AI service or Generative AI model.\n\n3. Grant the service account the corresponding role listed in [Prepare IAM permissions](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-ao-permissions) to let it gain access to the service or model you want to use.\n\n4. [Get the service key pairs of your service account](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/iam/service-identities#list_credentials_for_service_accounts).\n\n5. Set the following environment variable:\n\n export GOOGLE_APPLICATION_CREDENTIALS=\u003cvar translate=\"no\"\u003ePATH_TO_SERVICE_KEY\u003c/var\u003e\n\n Replace \u003cvar translate=\"no\"\u003ePATH_TO_SERVICE_KEY\u003c/var\u003e with the path to the JSON\n file that contains the key pairs of your service account.\n6. Install the `google-auth` client library:\n\n pip install google-auth\n\n7. Add the following code to a Python script:\n\n import os\n import google.auth\n from google.auth.transport import requests\n import requests as reqs\n\n os.environ[\"GOOGLE_APPLICATION_CREDENTIALS\"] = \"\u003cvar translate=\"no\"\u003ePATH_TO_SERVICE_KEY\u003c/var\u003e\"\n os.environ[\"GRPC_DEFAULT_SSL_ROOTS_FILE_PATH\"] = \"\u003cvar translate=\"no\"\u003eCERT_NAME\u003c/var\u003e\"\n\n # If you use a client library for your request,\n # you must include port :443 after the service endpoint\n # in the audience path.\n audience = \"https://\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e\"\n\n creds, project_id = google.auth.default()\n print(project_id)\n creds = creds.with_gdch_audience(audience)\n\n def test_get_token():\n sesh = reqs.Session()\n req = requests.Request(session=sesh)\n creds.refresh(req)\n print(creds.token)\n\n if __name__==\"__main__\":\n test_get_token()\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePATH_TO_SERVICE_KEY\u003c/var\u003e: the path to the JSON file that contains the key pairs of your service account.\n - \u003cvar translate=\"no\"\u003eCERT_NAME\u003c/var\u003e: the name of the Certificate Authority (CA) certificate file, such as `org-1-trust-bundle-ca.cert`. You only need this value if you are in a development environment. Otherwise, omit it.\n - \u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e: the API endpoint that you use for your organization. For more information, [view service status and endpoints](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-api-status). Depending on the intended use of the authentication token, you might need to include the port after the service endpoint in the audience path as follows:\n\n - If you use a [client library](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-install-libraries) for your request, you must include port `:443` after the service endpoint in the audience path. Therefore, the `audience` path in the script must be `\"https://`\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e`:443\"`.\n - If you use gRPC, `curl`, or programmatic REST calls for your request, don't include the port. Therefore, the `audience` path in the script must be `\"https://`\u003cvar translate=\"no\"\u003eENDPOINT\u003c/var\u003e`\"`.\n8. Save the Python script.\n\n9. Run the Python script to fetch the token:\n\n python \u003cvar translate=\"no\"\u003eSCRIPT_NAME\u003c/var\u003e\n\n Replace \u003cvar translate=\"no\"\u003eSCRIPT_NAME\u003c/var\u003e with the name you gave to your Python script, such as `token.py`.\n\n The output displays the authentication token. Add the token to the header of the command-line requests you make, as in the following example: \n\n -H \"Authorization: Bearer \u003cvar translate=\"no\"\u003eTOKEN\u003c/var\u003e\"\n\n Replace \u003cvar translate=\"no\"\u003eTOKEN\u003c/var\u003e with the value for the authentication token that the output displays."]]