Restez organisé à l'aide des collections Enregistrez et classez les contenus selon vos préférences.

Utiliser des données enrichies en contexte dans les règles

Pour permettre aux analystes de sécurité d'effectuer une enquête, Chronicle ingère des données contextuelles provenant de différentes sources, analyse les données ingérées et fournit davantage de contexte sur les artefacts dans un environnement client. Ce document fournit des exemples montrant comment les analystes peuvent utiliser des données enrichies dans le contexte du moteur de détection.

Pour en savoir plus sur la manière dont Chronicle enrichit les données entrantes, les types de enrichissement effectués et les champs enrichis, consultez la page Enrichir les données UDM lors de l'ingestion de journaux.

Champs enrichis prévalence dans les règles

Les exemples suivants montrent comment utiliser les champs enrichis liés à la prévalence dans le moteur de détection. Pour en savoir plus, consultez la liste des champs enrichis liés à la prévalence.

Identifier l'accès au domaine à faible prévalence

Cette règle de détection génère un événement de détection, et non une alerte de détection, lorsqu'une correspondance est trouvée. Elle sert principalement d'indicateur secondaire lorsque vous examinez un asset. Par exemple, d'autres alertes de gravité plus élevée ont déclenché un incident.

rule network_prevalence_low_prevalence_domain_access {

  meta:
    author = "Chronicle Security"
    description = "Detects access to a low prevalence domain. Requires baseline of prevalence be in place for effective deployment."
    severity = "LOW"

  events:
        $e.metadata.event_type = "NETWORK_HTTP"
        $e.principal.ip = $ip

        // filter out URLs with RFC 1918 IP addresses, i.e., internal assets
        not re.regex($e.target.hostname, `(127(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$)|(10(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$)|(192\.168(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){2}$)|(172\.(?:1[6-9]|2\d|3[0-1])(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){2})`)

        // only match valid FQDN, filter out background non-routable noise
        re.regex($e.target.hostname, `(?:[a-z0-9](?:[a-z0-9-]{0,61}[a-z0-9])?\.)+[a-z0-9][a-z0-9-]{0,61}[a-z0-9]`)
        $domainName = $e.target.hostname

        //join event ($e) to entity graph ($d)
        $e.target.hostname = $d.graph.entity.domain.name

        $d.graph.metadata.entity_type = "DOMAIN_NAME"
        // tune prevalence as fits your results
        $d.graph.entity.domain.prevalence.rolling_max <= 10

    match:
        $ip over 1h

    outcome:
      $risk_score = max(
          // increment risk score based upon rolling_max prevalence
          if ( $d.graph.entity.domain.prevalence.rolling_max >= 10, 10) +
          if ( $d.graph.entity.domain.prevalence.rolling_max >= 2 and $d.graph.entity.domain.prevalence.rolling_max <= 9 , 20) +
          if ( $d.graph.entity.domain.prevalence.rolling_max = 1, 30)
    )
    $domain_list = array_distinct($domainName)
    $domain_count = count_distinct($domainName)

  condition:
    $e and $d
}

Voici un exemple montrant les détections générées par cette règle.

Accès à un domaine à faible prévalence Afficher l'image dans une nouvelle fenêtre

Identifier l'accès aux domaines présentant un faible taux de prévalence

Cette règle peut être utilisée pour détecter l'accès aux domaines à faible score de prévalence. Pour être efficaces, les artefacts doivent être associés à des valeurs de référence de prévalence. L'exemple suivant utilise des listes de référence pour régler le résultat et applique une valeur de prévalence du seuil.

rule network_prevalence_low_prevalence_domain_access {
  meta:
    author = "Chronicle Security"
    description = "Detects access to a low prevalence domain. Requires baseline of prevalence be in place for effective deployment."
    severity = "LOW"

  events:
        $e.metadata.event_type = "NETWORK_HTTP"
        $e.principal.ip = $ip

        // filter out URLs with RFC 1918 IP addresses, i.e., internal assets
        not re.regex($e.target.hostname, `(127(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$)|(10(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){3}$)|(192\.168(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){2}$)|(172\.(?:1[6-9]|2\d|3[0-1])(?:\.(25[0-5]|2[0-4][0-9]|[01]?[0-9][0-9]?)){2})`)

        // used an explicit exclusion reference list
        not $e.target.hostname in %exclusion_network_prevalence_low_prevalence_domain_access

        // only match valid FQDN, filter out background non-routable noise
        re.regex($e.target.hostname, `(?:[a-z0-9](?:[a-z0-9-]{0,61}[a-z0-9])?\.)+[a-z0-9][a-z0-9-]{0,61}[a-z0-9]`)

        $domainName = $e.target.hostname

        //join event ($e) to entity graph ($d)
        $e.target.hostname = $d.graph.entity.domain.name

        $d.graph.metadata.entity_type = "DOMAIN_NAME"

        // tune prevalence as fits your results
        $d.graph.entity.domain.prevalence.rolling_max <= 10

  match:
        $ip over 1h

  outcome:
    $risk_score = max(
        // increment risk score based upon rolling_max prevalence
        if ( $d.graph.entity.domain.prevalence.rolling_max >= 10, 10) +
        if ( $d.graph.entity.domain.prevalence.rolling_max >= 2 and $d.graph.entity.domain.prevalence.rolling_max <= 9 , 20) +
        if ( $d.graph.entity.domain.prevalence.rolling_max = 1, 30)
    )

    $domain_list = array_distinct($domainName)
    $domain_count = count_distinct($domainName)

  condition:
    $e and #d > 10
}

Voici une capture d'écran montrant les exemples de détection générés par cette règle.

Accès à un domaine à faible prévalence Afficher l'image dans une nouvelle fenêtre

Identifier les domaines à faible prévalence grâce à une correspondance IOC

Cette règle de détection génère une alerte de détection et fournit une correspondance haute fidélité comparant un domaine à faible prévalence, qui est également un CIO connu.

rule network_prevalence_uncommon_domain_ioc_match {

  meta:
    author = "Chronicle Security"
    description = "Lookup Network DNS queries against Entity Graph for low prevalence domains with a matching IOC entry."
    severity = "MEDIUM"

  events:
    $e.metadata.event_type = "NETWORK_DNS"
    $e.network.dns.questions.name = $hostname

    //only match FQDNs, e.g., exclude chrome dns access tests and other internal hosts
    $e.network.dns.questions.name = /(?:[a-z0-9](?:[a-z0-9-]{0,61}[a-z0-9])?\.)+[a-z0-9][a-z0-9-]{0,61}[a-z0-9]/

    //prevalence entity graph lookup
    $p.graph.metadata.entity_type = "DOMAIN_NAME"
    $p.graph.entity.domain.prevalence.rolling_max <= 3
    $p.graph.entity.domain.name = $hostname

    //ioc entity graph lookup
    $i.graph.metadata.vendor_name = "ET_PRO_IOC"
    $i.graph.metadata.entity_type = "DOMAIN_NAME"
    $i.graph.entity.hostname = $hostname

  match:
    $hostname over 10m

  outcome:
    $risk_score = max(
        //increment risk score based upon rolling_max prevalence
        if ( $p.graph.entity.domain.prevalence.rolling_max = 3, 50) +
        if ( $p.graph.entity.domain.prevalence.rolling_max = 2, 70) +
        if ( $p.graph.entity.domain.prevalence.rolling_max = 1, 90)
    )

  condition:
    $e and $p and $i
}

Voici un exemple montrant les détections générées par cette règle.

Domaine de faible prévalence avec correspondance du CIO

Utiliser des champs enrichis pour la navigation sécurisée dans les règles

Chronicle ingère les données des listes de menaces associées aux hachages de fichiers. Ces informations enrichies sont stockées en tant qu'entités dans Chronicle.

Vous pouvez créer des règles de détection de moteur pour identifier les correspondances avec des entités ingérées à partir de la navigation sécurisée. Voici un exemple de règle de détection de moteur qui interroge ces informations enrichies pour créer des analyses contextuelles.

rule safe_browsing_file_execution {
    meta:
        author = "Chronicle Security"
        description = "Example usage of Safe Browsing data, to detect execution of a file that's been deemed malicious"
        severity = "LOW"

    events:
        // find a process launch event, match on hostname
        $execution.metadata.event_type = "PROCESS_LAUNCH"
        $execution.principal.hostname = $hostname

        // join execution event with Safe Browsing graph
        $sb.graph.entity.file.sha256 = $execution.target.process.file.sha256

        // look for files deemed malicious
        $sb.graph.metadata.entity_type = "FILE"
        $sb.graph.metadata.threat.severity = "CRITICAL"

    match:
        $hostname over 1h

    condition:
        $execution and $sb
}