Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Com o Google Distributed Cloud (GDC) air-gapped, é possível criar backups e restaurar dados do diretório inicial das instâncias do JupyterLab.
Nesta página, descrevemos como criar e restaurar backups de dados de notebooks do Vertex AI Workbench. Se você não conhece a Vertex AI,
saiba mais sobre o Vertex AI Workbench.
Antes de começar
Para receber as permissões necessárias para copiar dados restaurados, peça ao administrador do IAM da organização que conceda a você a função de desenvolvedor de cluster de usuário (user-cluster-developer).
Criar um backup e restaurar dados da instância do JupyterLab
Defina aplicativos protegidos para criar um backup do diretório inicial de uma
instância individual do JupyterLab ou dos diretórios iniciais de todas as instâncias do JupyterLab
em um projeto de uma só vez.
Crie um recurso personalizado ProtectedApplication no cluster em que você quer
programar backups. Os planos de backup e restauração usam aplicativos protegidos para selecionar recursos. Para informações sobre como criar aplicativos protegidos, consulte
Estratégias de aplicativos protegidos.
O recurso personalizado ProtectedApplication contém os seguintes campos:
Campo
Descrição
resourceSelection
A maneira como o objeto ProtectedApplication seleciona recursos para backups ou restaurações.
type
O método para selecionar recursos. Um tipo Selector indica que os recursos com rótulos correspondentes precisam ser selecionados.
selector
As regras de seleção. Esse campo contém os seguintes subcampos:
matchLabels
Os rótulos que o objeto ProtectedApplication usa para corresponder a recursos. Esse campo contém os seguintes subcampos:
app.kubernetes.io/part-of
O nome de um aplicativo de nível superior de que este faz parte. Selecione o Vertex AI Workbench como o aplicativo de alto nível para instâncias do JupyterLab.
app.kubernetes.io/component
O componente na arquitetura. Selecione recursos do Vertex AI Workbench que fornecem armazenamento para instâncias do JupyterLab.
app.kubernetes.io/instance
Um nome exclusivo que identifica a instância de um aplicativo. Reduza o escopo para selecionar uma instância do JupyterLab. O valor é igual ao nome da instância do JupyterLab no console do GDC.
Use o recurso personalizado ProtectedApplication para selecionar o armazenamento de uma única instância do JupyterLab ou de todas as instâncias do JupyterLab em um projeto, como nos exemplos a seguir:
Selecione o armazenamento de uma única instância do JupyterLab:
O exemplo a seguir mostra um recurso personalizado ProtectedApplication que
seleciona o armazenamento para uma instância do JupyterLab chamada my-instance-name no
namespace my-project:
Selecione o armazenamento de todas as instâncias do JupyterLab:
O exemplo a seguir mostra um recurso personalizado ProtectedApplication que
seleciona o armazenamento para todas as instâncias do JupyterLab no namespace my-project:
[[["Fácil de entender","easyToUnderstand","thumb-up"],["Meu problema foi resolvido","solvedMyProblem","thumb-up"],["Outro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Informações incorretas ou exemplo de código","incorrectInformationOrSampleCode","thumb-down"],["Não contém as informações/amostras de que eu preciso","missingTheInformationSamplesINeed","thumb-down"],["Problema na tradução","translationIssue","thumb-down"],["Outro","otherDown","thumb-down"]],["Última atualização 2025-09-04 UTC."],[[["\u003cp\u003eGoogle Distributed Cloud (GDC) air-gapped allows for the creation of backups and restoration of data from the home directory of JupyterLab instances.\u003c/p\u003e\n"],["\u003cp\u003eA \u003ccode\u003eProtectedApplication\u003c/code\u003e custom resource is used to define which JupyterLab instances, or their storage, will be included in backup and restore operations.\u003c/p\u003e\n"],["\u003cp\u003eYou can create backups for a single JupyterLab instance or for all JupyterLab instances within a project by selecting the appropriate labels within the \u003ccode\u003eProtectedApplication\u003c/code\u003e custom resource.\u003c/p\u003e\n"],["\u003cp\u003eRestored data must be transferred to a new JupyterLab instance, as settings on the original \u003ccode\u003eNotebook\u003c/code\u003e custom resource are not backed up, and the process involves getting pod and image details, and creating a new pod for data access and copying.\u003c/p\u003e\n"],["\u003cp\u003eThe restored data is located in the \u003ccode\u003e/home/jovyan/restore\u003c/code\u003e directory of the new JupyterLab instance, accessible after transferring the data from the restored \u003ccode\u003ePersistentVolumeClaim\u003c/code\u003e.\u003c/p\u003e\n"]]],[],null,["# Create a backup and restore notebook data\n\nGoogle Distributed Cloud (GDC) air-gapped lets you create backups and restore data from the\nhome directory of your JupyterLab instances.\n\nThis page describes creating and restoring backups of Vertex AI Workbench\nnotebook data. If you are new to Vertex AI,\n[learn more about Vertex AI Workbench](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-workbench-intro).\n| **Note:** Vertex AI Workbench doesn't support backing up the settings on the `Notebook` custom resource of the JupyterLab instance. You must create new JupyterLab instances and transfer the restored data into that instance.\n\nBefore you begin\n----------------\n\nTo get the permissions that you need to copy restored data, ask your\nOrganization IAM Admin to grant you the User Cluster\nDeveloper (`user-cluster-developer`) role.\n\nCreate a backup and restore JupyterLab instance data\n----------------------------------------------------\n\nDefine protected applications to create a backup of the home directory of an\nindividual JupyterLab instance or the home directories of all JupyterLab instances\nin a project at once.\n\nCreate a `ProtectedApplication` custom resource in the cluster where you want to\nschedule backups. Backup and restore plans use protected applications to select\nresources. For information about creating protected applications, see\n[Protected application strategies](/distributed-cloud/hosted/docs/latest/gdch/platform-application/pa-ao-operations/protected-application-strategies).\n\nThe `ProtectedApplication` custom resource contains the following fields:\n\nUse the `ProtectedApplication` custom resource to select the storage of a single\nJupyterLab instance or all JupyterLab instances in a project, as in the following\nexamples:\n\n- **Select the storage of a single JupyterLab instance**:\n\n The following example shows a `ProtectedApplication` custom resource that\n selects the storage for a JupyterLab instance named `my-instance-name` in\n the `my-project` namespace: \n\n apiVersion: gkebackup.gke.io/v1\n kind: ProtectedApplication\n metadata:\n name: my-protected-application\n namespace: my-project\n spec:\n resourceSelection:\n type: Selector\n selector:\n matchLabels:\n app.kubernetes.io/part-of: vtxwb\n app.kubernetes.io/component: storage\n app.kubernetes.io/instance: my-instance-name\n\n- **Select the storage of all JupyterLab instances**:\n\n The following example shows a `ProtectedApplication` custom resource that\n selects the storage for all JupyterLab instances in the `my-project` namespace: \n\n apiVersion: gkebackup.gke.io/v1\n kind: ProtectedApplication\n metadata:\n name: my-protected-application\n namespace: my-project\n spec:\n resourceSelection:\n type: Selector\n selector:\n matchLabels:\n app.kubernetes.io/part-of: vtxwb\n app.kubernetes.io/component: storage\n\n This example doesn't contain the `app.kubernetes.io/instance` label because\n it selects all JupyterLab instances.\n\nTo create a backup and restore data from a JupyterLab instance,\n[plan a set of backups](/distributed-cloud/hosted/docs/latest/gdch/platform-application/pa-ao-operations/plan-backups)\nand [plan a set of restores](/distributed-cloud/hosted/docs/latest/gdch/platform-application/pa-ao-operations/plan-restores)\nusing the `ProtectedApplication` custom resource you defined.\n\nCopy restored data to a new JupyterLab instance\n-----------------------------------------------\n\nFollow these steps to copy restored data from the `PersistentVolumeClaim`\nresource of a JupyterLab instance to a new JupyterLab instance:\n\n1. [Meet the prerequisites](#before-you-begin).\n2. [Create a JupyterLab notebook](/distributed-cloud/hosted/docs/latest/gdch/application/ao-user/vertex-ai-workbench#create-notebook) associated with a JupyterLab instance to copy restored data.\n3. Get the pod name of the JupyterLab instance where you created the notebook:\n\n kubectl get pods -l notebook-name=\u003cvar translate=\"no\"\u003eINSTANCE_NAME\u003c/var\u003e -n \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eINSTANCE_NAME\u003c/var\u003e: the name of the JupyterLab instance you configured.\n - \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e: the project namespace where you created the JupyterLab instance.\n4. Get the name of the image that the JupyterLab instance is running:\n\n kubectl get pods \u003cvar translate=\"no\"\u003ePOD_NAME\u003c/var\u003e -n \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e -o jsonpath=\"{.spec.containers[0].image}\"\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePOD_NAME\u003c/var\u003e: the pod name of the JupyterLab instance.\n - \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e: the project namespace where you created the JupyterLab instance.\n5. Find the name of the `PersistentVolumeClaim` resource that was restored:\n\n kubectl get pvc -l app.kubernetes.io/part-of=vtxwb,app.kubernetes.io/component=storage,app.kubernetes.io/instance=\u003cvar translate=\"no\"\u003eRESTORED_INSTANCE_NAME\u003c/var\u003e -n \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003eRESTORED_INSTANCE_NAME\u003c/var\u003e: the name of the JupyterLab instance that you restored.\n - \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e: the project namespace where you created the JupyterLab instance.\n6. Create a YAML file named `vtxwb-data.yaml` with the following content:\n\n apiVersion: v1\n kind: Pod\n metadata:\n name: vtxwb-data\n namespace: \u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-l devsite-syntax-l-Scalar devsite-syntax-l-Scalar-Plain\"\u003ePROJECT_NAMESPACE\u003c/span\u003e\u003c/var\u003e\n labels:\n aiplatform.gdc.goog/service-type: workbench\n spec:\n containers:\n - args:\n - sleep infinity\n command:\n - bash\n - -c\n image: \u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-l devsite-syntax-l-Scalar devsite-syntax-l-Scalar-Plain\"\u003eIMAGE_NAME\u003c/span\u003e\u003c/var\u003e\n imagePullPolicy: IfNotPresent\n name: vtxwb-data\n resources:\n limits:\n cpu: \"1\"\n memory: 1Gi\n requests:\n cpu: \"1\"\n memory: 1Gi\n terminationMessagePath: /dev/termination-log\n terminationMessagePolicy: File\n volumeMounts:\n - mountPath: /home/jovyan\n name: restore-data\n workingDir: /home/jovyan\n volumes:\n - name: restore-data\n persistentVolumeClaim:\n claimName: \u003cvar translate=\"no\"\u003e\u003cspan class=\"devsite-syntax-l devsite-syntax-l-Scalar devsite-syntax-l-Scalar-Plain\"\u003eRESTORED_PVC_NAME\u003c/span\u003e\u003c/var\u003e\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e: the project namespace where you created the JupyterLab instance.\n - \u003cvar translate=\"no\"\u003eIMAGE_NAME\u003c/var\u003e: the name of the container image that the JupyterLab instance is running.\n - \u003cvar translate=\"no\"\u003eRESTORED_PVC_NAME\u003c/var\u003e: the name of the restored `PersistentVolumeClaim` resource.\n\n | **Note:** The name of the home directory of your JupyterLab instances is `/home/jovyan`.\n7. Create a new pod for your restored `PersistentVolumeClaim` resource:\n\n kubectl apply -f ./vtxwb-data --kubeconfig \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e\n\n Replace \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e with the path of the\n kubeconfig file in the cluster.\n8. Wait for the `vtxwb-data` pod to reach the `RUNNING` state.\n\n9. Copy your restored data to a new JupyterLab instance:\n\n kubectl cp \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e/vtxwb-data:/home/jovyan ./restore --kubeconfig \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e\n\n kubectl cp ./restore \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e/\u003cvar translate=\"no\"\u003ePOD_NAME\u003c/var\u003e:/home/jovyan/restore --kubeconfig \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e\n\n rm ./restore\n\n Replace the following:\n - \u003cvar translate=\"no\"\u003ePROJECT_NAMESPACE\u003c/var\u003e: the project namespace where you created the JupyterLab instance.\n - \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e: the path of the kubeconfig file in the cluster.\n - \u003cvar translate=\"no\"\u003ePOD_NAME\u003c/var\u003e: the pod name of the JupyterLab instance.\n\n After copying the data, your restored data is available in the\n `/home/jovyan/restore` directory.\n10. Delete the pod that you created to access your restored data:\n\n kubectl delete pod vtxwb-data -n my-namespace` --kubeconfig \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e\n\n Replace \u003cvar translate=\"no\"\u003eKUBECONFIG_PATH\u003c/var\u003e with the path of the kubeconfig file in the cluster."]]