Create and use tables

This document describes how to create and use standard (built-in) tables in BigQuery. For information about creating other table types, see:

After creating a table, you can:

  • Control access to your table data
  • Get information about your tables
  • List the tables in a dataset
  • Get table metadata

For more information about managing tables including updating table properties, copying a table, and deleting a table, see Managing tables.

Before you begin

Before creating a table in BigQuery, first:

Table naming

When you create a table in BigQuery, the table name must be unique per dataset. The table name can:

  • Contain characters with a total of up to 1,024 UTF-8 bytes.
  • Contain Unicode characters in category L (letter), M (mark), N (number), Pc (connector, including underscore), Pd (dash), Zs (space). For more information, see General Category.

The following are all examples of valid table names: table 01, ग्राहक, 00_お客様, étudiant-01.

Caveats:

  • Table names are case-sensitive by default. mytable and MyTable can coexist in the same dataset, unless they are part of a dataset with case-sensitivity turned off.
  • Some table names and table name prefixes are reserved. If you receive an error saying that your table name or prefix is reserved, then select a different name and try again.
  • If you include multiple dot operators (.) in a sequence, the duplicate operators are implicitly stripped.

    For example, this: project_name....dataset_name..table_name

    Becomes this: project_name.dataset_name.table_name

Create tables

You can create a table in BigQuery in the following ways:

  • Manually using the Google Cloud console or the bq command-line tool bq mk command.
  • Programmatically by calling the tables.insert API method.
  • By using the client libraries.
  • From query results.
  • By defining a table that references an external data source.
  • When you load data.
  • By using a CREATE TABLE data definition language (DDL) statement.

Required permissions

To create a table, you need the following IAM permissions:

  • bigquery.tables.create
  • bigquery.tables.updateData
  • bigquery.jobs.create

Additionally, you might require the bigquery.tables.getData permission to access the data that you write to the table.

Each of the following predefined IAM roles includes the permissions that you need in order to create a table:

  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.admin (includes the bigquery.jobs.create permission)
  • roles/bigquery.user (includes the bigquery.jobs.create permission)
  • roles/bigquery.jobUser (includes the bigquery.jobs.create permission)

Additionally, if you have the bigquery.datasets.create permission, you can create and update tables in the datasets that you create.

For more information on IAM roles and permissions in BigQuery, see Predefined roles and permissions.

Create an empty table with a schema definition

You can create an empty table with a schema definition in the following ways:

  • Enter the schema using the Google Cloud console.
  • Provide the schema inline using the bq command-line tool.
  • Submit a JSON schema file using the bq command-line tool.
  • Provide the schema in a table resource when calling the APIs tables.insert method.

For more information about specifying a table schema, see Specifying a schema.

After the table is created, you can load data into it or populate it by writing query results to it.

To create an empty table with a schema definition:

Console

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the Explorer pane, expand your project, and then select a dataset.
  3. In the Dataset info section, click Create table.
  4. In the Create table panel, specify the following details:
    1. In the Source section, select Empty table in the Create table from list.
    2. In the Destination section, specify the following details:
      1. For Dataset, select the dataset in which you want to create the table.
      2. In the Table field, enter the name of the table that you want to create.
      3. Verify that the Table type field is set to Native table.
    3. In the Schema section, enter the schema definition. You can enter schema information manually by using one of the following methods:
      • Option 1: Click Edit as text and paste the schema in the form of a JSON array. When you use a JSON array, you generate the schema using the same process as creating a JSON schema file. You can view the schema of an existing table in JSON format by entering the following command:
            bq show --format=prettyjson dataset.table
            
      • Option 2: Click Add field and enter the table schema. Specify each field's Name, Type, and Mode.
    4. Optional: Specify Partition and cluster settings. For more information, see Creating partitioned tables and Creating and using clustered tables.
    5. Optional: In the Advanced options section, if you want to use a customer-managed encryption key, then select the Use a customer-managed encryption key (CMEK) option. By default, BigQuery encrypts customer content stored at rest by using a Google-owned and Google-managed key.
    6. Click Create table.

SQL

The following example creates a table named newtable that expires on January 1, 2023:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE TABLE mydataset.newtable (
      x INT64 OPTIONS (description = 'An optional INTEGER field'),
      y STRUCT <
        a ARRAY <STRING> OPTIONS (description = 'A repeated STRING field'),
        b BOOL
      >
    ) OPTIONS (
        expiration_timestamp = TIMESTAMP '2023-01-01 00:00:00 UTC',
        description = 'a table that expires in 2023',
        labels = [('org_unit', 'development')]);
    

  3. Click Run.

For more information about how to run queries, see Run an interactive query.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Use the bq mk command with the --table or -t flag. You can supply table schema information inline or with a JSON schema file. For a full list of parameters, see the bq mk --table reference. Some optional parameters include:

    • --expiration
    • --description
    • --time_partitioning_field
    • --time_partitioning_type
    • --range_partitioning
    • --clustering_fields
    • --destination_kms_key
    • --label

    --time_partitioning_field, --time_partitioning_type, --range_partitioning, --clustering_fields, and --destination_kms_key are not demonstrated here. Refer to the following links for more information on these optional parameters:

    If you are creating a table in a project other than your default project, add the project ID to the dataset in the following format: project_id:dataset.

    To create an empty table in an existing dataset with a schema definition, enter the following:

    bq mk \
    --table \
    --expiration=integer \
    --description=description \
    --label=key_1:value_1 \
    --label=key_2:value_2 \
    --add_tags=key_3:value_3[,...] \
    project_id:dataset.table \
    schema
    

    Replace the following:

    • integer is the default lifetime (in seconds) for the table. The minimum value is 3600 seconds (one hour). The expiration time evaluates to the current UTC time plus the integer value. If you set the expiration time when you create a table, the dataset's default table expiration setting is ignored.
    • description is a description of the table in quotes.
    • key_1:value_1 and key_2:value_2 are key-value pairs that specify labels.
    • key_3:value_3 are key-value pairs that specify tags. Add multiple tags under the same flag with commas between key:value pairs.
    • project_id is your project ID.
    • dataset is a dataset in your project.
    • table is the name of the table you're creating.
    • schema is an inline schema definition in the format field:data_type,field:data_type or the path to the JSON schema file on your local machine.

    When you specify the schema on the command line, you cannot include a RECORD (STRUCT) type, you cannot include a column description, and you cannot specify the column mode. All modes default to NULLABLE. To include descriptions, modes, and RECORD types, supply a JSON schema file instead.

    Examples:

    Enter the following command to create a table using an inline schema definition. This command creates a table named mytable in mydataset in your default project. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The command uses the -t shortcut instead of --table. The schema is specified inline as: qtr:STRING,sales:FLOAT,year:STRING.

    bq mk \
     -t \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     mydataset.mytable \
     qtr:STRING,sales:FLOAT,year:STRING
    

    Enter the following command to create a table using a JSON schema file. This command creates a table named mytable in mydataset in your default project. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The path to the schema file is /tmp/myschema.json.

    bq mk \
     --table \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     mydataset.mytable \
     /tmp/myschema.json
    

    Enter the following command to create a table using an JSON schema file. This command creates a table named mytable in mydataset in myotherproject. The table expiration is set to 3600 seconds (1 hour), the description is set to This is my table, and the label is set to organization:development. The path to the schema file is /tmp/myschema.json.

    bq mk \
     --table \
     --expiration 3600 \
     --description "This is my table" \
     --label organization:development \
     myotherproject:mydataset.mytable \
     /tmp/myschema.json
    

    After the table is created, you can update the table's expiration, description, and labels. You can also modify the schema definition.

Terraform

Use the google_bigquery_table resource.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

Create a table

The following example creates a table named mytable:

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "mode": "NULLABLE",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  }
]
EOF

}

Create a table and grant access to it

The following example creates a table named mytable, then uses the google_bigquery_table_iam_policy resource to grant access to it. Take this step only if you want to grant access to the table to principals who don't have access to the dataset in which the table resides.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "mode": "NULLABLE",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  }
]
EOF

}

data "google_iam_policy" "default" {
  binding {
    role = "roles/bigquery.dataOwner"
    members = [
      "user:raha@altostrat.com",
    ]
  }
}

resource "google_bigquery_table_iam_policy" "policy" {
  dataset_id  = google_bigquery_table.default.dataset_id
  table_id    = google_bigquery_table.default.table_id
  policy_data = data.google_iam_policy.default.policy_data
}

Create a table with a customer-managed encryption key

The following example creates a table named mytable, and also uses the google_kms_crypto_key and google_kms_key_ring resources to specify a Cloud Key Management Service key for the table. You must enable the Cloud Key Management Service API before running this example.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "mode": "NULLABLE",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  }
]
EOF

  encryption_configuration {
    kms_key_name = google_kms_crypto_key.crypto_key.id
  }

  depends_on = [google_project_iam_member.service_account_access]
}

resource "google_kms_crypto_key" "crypto_key" {
  name     = "example-key"
  key_ring = google_kms_key_ring.key_ring.id
}

resource "random_id" "default" {
  byte_length = 8
}

resource "google_kms_key_ring" "key_ring" {
  name     = "${random_id.default.hex}-example-keyring"
  location = "us"
}

# Enable the BigQuery service account to encrypt/decrypt Cloud KMS keys
data "google_project" "project" {
}

resource "google_project_iam_member" "service_account_access" {
  project = data.google_project.project.project_id
  role    = "roles/cloudkms.cryptoKeyEncrypterDecrypter"
  member  = "serviceAccount:bq-${data.google_project.project.number}@bigquery-encryption.iam.gserviceaccount.com"
}

To apply your Terraform configuration in a Google Cloud project, complete the steps in the following sections.

Prepare Cloud Shell

  1. Launch Cloud Shell.
  2. Set the default Google Cloud project where you want to apply your Terraform configurations.

    You only need to run this command once per project, and you can run it in any directory.

    export GOOGLE_CLOUD_PROJECT=PROJECT_ID

    Environment variables are overridden if you set explicit values in the Terraform configuration file.

Prepare the directory

Each Terraform configuration file must have its own directory (also called a root module).

  1. In Cloud Shell, create a directory and a new file within that directory. The filename must have the .tf extension—for example main.tf. In this tutorial, the file is referred to as main.tf.
    mkdir DIRECTORY && cd DIRECTORY && touch main.tf
  2. If you are following a tutorial, you can copy the sample code in each section or step.

    Copy the sample code into the newly created main.tf.

    Optionally, copy the code from GitHub. This is recommended when the Terraform snippet is part of an end-to-end solution.

  3. Review and modify the sample parameters to apply to your environment.
  4. Save your changes.
  5. Initialize Terraform. You only need to do this once per directory.
    terraform init

    Optionally, to use the latest Google provider version, include the -upgrade option:

    terraform init -upgrade

Apply the changes

  1. Review the configuration and verify that the resources that Terraform is going to create or update match your expectations:
    terraform plan

    Make corrections to the configuration as necessary.

  2. Apply the Terraform configuration by running the following command and entering yes at the prompt:
    terraform apply

    Wait until Terraform displays the "Apply complete!" message.

  3. Open your Google Cloud project to view the results. In the Google Cloud console, navigate to your resources in the UI to make sure that Terraform has created or updated them.

API

Call the tables.insert method with a defined table resource.

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.


using Google.Cloud.BigQuery.V2;

public class BigQueryCreateTable
{
    public BigQueryTable CreateTable(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var dataset = client.GetDataset(datasetId);
        // Create schema for new table.
        var schema = new TableSchemaBuilder
        {
            { "full_name", BigQueryDbType.String },
            { "age", BigQueryDbType.Int64 }
        }.Build();
        // Create the table
        return dataset.CreateTable(tableId: "your_table_id", schema: schema);
    }
}

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"
	"time"

	"cloud.google.com/go/bigquery"
)

// createTableExplicitSchema demonstrates creating a new BigQuery table and specifying a schema.
func createTableExplicitSchema(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "full_name", Type: bigquery.StringFieldType},
		{Name: "age", Type: bigquery.IntegerFieldType},
	}

	metaData := &bigquery.TableMetadata{
		Schema:         sampleSchema,
		ExpirationTime: time.Now().AddDate(1, 0, 0), // Table will be automatically deleted in 1 year.
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

public class CreateTable {

  public static void runCreateTable() {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL));
    createTable(datasetName, tableName, schema);
  }

  public static void createTable(String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      TableDefinition tableDefinition = StandardTableDefinition.of(schema);
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTable() {
  // Creates a new table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  // const schema = 'Name:string, Age:integer, Weight:float, IsMagic:boolean';

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    location: 'US',
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created.`);
}

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
// $projectId = 'The Google project ID';
// $datasetId = 'The BigQuery dataset ID';
// $tableId = 'The BigQuery table ID';
// $fields = [
//    [
//        'name' => 'field1',
//        'type' => 'string',
//        'mode' => 'required'
//    ],
//    [
//        'name' => 'field2',
//        'type' => 'integer'
//    ],
//];

$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$schema = ['fields' => $fields];
$table = $dataset->createTable($tableId, ['schema' => $schema]);
printf('Created table %s' . PHP_EOL, $tableId);

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING", mode="REQUIRED"),
    bigquery.SchemaField("age", "INTEGER", mode="REQUIRED"),
]

table = bigquery.Table(table_id, schema=schema)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Ruby

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

require "google/cloud/bigquery"

def create_table dataset_id = "my_dataset"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id
  table_id = "my_table"

  table = dataset.create_table table_id do |updater|
    updater.string  "full_name", mode: :required
    updater.integer "age",       mode: :required
  end

  puts "Created table: #{table_id}"
end

Create an empty table without a schema definition

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create a table without schema
public class CreateTableWithoutSchema {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    createTableWithoutSchema(datasetName, tableName);
  }

  public static void createTableWithoutSchema(String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);
      TableDefinition tableDefinition = StandardTableDefinition.of(Schema.of());
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Table was not created. \n" + e.toString());
    }
  }
}

Create a table from a query result

To create a table from a query result, write the results to a destination table.

Console

  1. Open the BigQuery page in the Google Cloud console.

    Go to the BigQuery page

  2. In the Explorer panel, expand your project and select a dataset.

  3. Enter a valid SQL query.

  4. Click More and then select Query settings.

    Query settings

  5. Select the Set a destination table for query results option.

    Set destination

  6. In the Destination section, select the Dataset in which you want to create the table, and then choose a Table Id.

  7. In the Destination table write preference section, choose one of the following:

    • Write if empty — Writes the query results to the table only if the table is empty.
    • Append to table — Appends the query results to an existing table.
    • Overwrite table — Overwrites an existing table with the same name using the query results.
  8. Optional: For Data location, choose your location.

  9. To update the query settings, click Save.

  10. Click Run. This creates a query job that writes the query results to the table you specified.

Alternatively, if you forget to specify a destination table before running your query, you can copy the cached results table to a permanent table by clicking the Save Results button above the editor.

SQL

The following example uses the CREATE TABLE statement to create the trips table from data in the public bikeshare_trips table:

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery

  2. In the query editor, enter the following statement:

    CREATE TABLE mydataset.trips AS (
      SELECT
        bike_id,
        start_time,
        duration_minutes
      FROM
        bigquery-public-data.austin_bikeshare.bikeshare_trips
    );
    

  3. Click Run.

For more information about how to run queries, see Run an interactive query.

For more information, see Creating a new table from an existing table.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Enter the bq query command and specify the --destination_table flag to create a permanent table based on the query results. Specify the use_legacy_sql=false flag to use GoogleSQL syntax. To write the query results to a table that is not in your default project, add the project ID to the dataset name in the following format: project_id:dataset.

    Optional: Supply the --location flag and set the value to your location.

    To control the write disposition for an existing destination table, specify one of the following optional flags:

    • --append_table: If the destination table exists, the query results are appended to it.
    • --replace: If the destination table exists, it is overwritten with the query results.

      bq --location=location query \
      --destination_table project_id:dataset.table \
      --use_legacy_sql=false 'query'
      

      Replace the following:

    • location is the name of the location used to process the query. The --location flag is optional. For example, if you are using BigQuery in the Tokyo region, you can set the flag's value to asia-northeast1. You can set a default value for the location by using the .bigqueryrc file.

    • project_id is your project ID.

    • dataset is the name of the dataset that contains the table to which you are writing the query results.

    • table is the name of the table to which you're writing the query results.

    • query is a query in GoogleSQL syntax.

      If no write disposition flag is specified, the default behavior is to write the results to the table only if it is empty. If the table exists and it is not empty, the following error is returned: BigQuery error in query operation: Error processing job project_id:bqjob_123abc456789_00000e1234f_1: Already Exists: Table project_id:dataset.table.

      Examples:

      Enter the following command to write query results to a destination table named mytable in mydataset. The dataset is in your default project. Since no write disposition flag is specified in the command, the table must be new or empty. Otherwise, an Already exists error is returned. The query retrieves data from the USA Name Data public dataset.

      bq query \
      --destination_table mydataset.mytable \
      --use_legacy_sql=false \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      Enter the following command to use query results to overwrite a destination table named mytable in mydataset. The dataset is in your default project. The command uses the --replace flag to overwrite the destination table.

      bq query \
      --destination_table mydataset.mytable \
      --replace \
      --use_legacy_sql=false \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      Enter the following command to append query results to a destination table named mytable in mydataset. The dataset is in my-other-project, not your default project. The command uses the --append_table flag to append the query results to the destination table.

      bq query \
      --append_table \
      --use_legacy_sql=false \
      --destination_table my-other-project:mydataset.mytable \
      'SELECT
      name,
      number
      FROM
      `bigquery-public-data`.usa_names.usa_1910_current
      WHERE
      gender = "M"
      ORDER BY
      number DESC'
      

      The output for each of these examples looks like the following. For readability, some output is truncated.

      Waiting on bqjob_r123abc456_000001234567_1 ... (2s) Current status: DONE
      +---------+--------+
      |  name   | number |
      +---------+--------+
      | Robert  |  10021 |
      | John    |   9636 |
      | Robert  |   9297 |
      | ...              |
      +---------+--------+
      

API

To save query results to a permanent table, call the jobs.insert method, configure a query job, and include a value for the destinationTable property. To control the write disposition for an existing destination table, configure the writeDisposition property.

To control the processing location for the query job, specify the location property in the jobReference section of the job resource.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// queryWithDestination demonstrates saving the results of a query to a specific table by setting the destination
// via the API properties.
func queryWithDestination(w io.Writer, projectID, destDatasetID, destTableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	q := client.Query("SELECT 17 as my_col")
	q.Location = "US" // Location must match the dataset(s) referenced in query.
	q.QueryConfig.Dst = client.Dataset(destDatasetID).Table(destTableID)
	// Run the query and print results when the query job is completed.
	job, err := q.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	it, err := job.Read(ctx)
	for {
		var row []bigquery.Value
		err := it.Next(&row)
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintln(w, row)
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

To save query results to a permanent table, set the destination table to the desired TableId in a QueryJobConfiguration.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.QueryJobConfiguration;
import com.google.cloud.bigquery.TableId;

public class SaveQueryToTable {

  public static void runSaveQueryToTable() {
    // TODO(developer): Replace these variables before running the sample.
    String query = "SELECT corpus FROM `bigquery-public-data.samples.shakespeare` GROUP BY corpus;";
    String destinationTable = "MY_TABLE";
    String destinationDataset = "MY_DATASET";

    saveQueryToTable(destinationDataset, destinationTable, query);
  }

  public static void saveQueryToTable(
      String destinationDataset, String destinationTableId, String query) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      // Identify the destination table
      TableId destinationTable = TableId.of(destinationDataset, destinationTableId);

      // Build the query job
      QueryJobConfiguration queryConfig =
          QueryJobConfiguration.newBuilder(query).setDestinationTable(destinationTable).build();

      // Execute the query.
      bigquery.query(queryConfig);

      // The results are now saved in the destination table.

      System.out.println("Saved query ran successfully");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Saved query did not run \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function queryDestinationTable() {
  // Queries the U.S. given names dataset for the state of Texas
  // and saves results to permanent table.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const tableId = 'my_table';

  // Create destination table reference
  const dataset = bigquery.dataset(datasetId);
  const destinationTable = dataset.table(tableId);

  const query = `SELECT name
    FROM \`bigquery-public-data.usa_names.usa_1910_2013\`
    WHERE state = 'TX'
    LIMIT 100`;

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    query: query,
    // Location must match that of the dataset(s) referenced in the query.
    location: 'US',
    destination: destinationTable,
  };

  // Run the query as a job
  const [job] = await bigquery.createQueryJob(options);

  console.log(`Job ${job.id} started.`);
  console.log(`Query results loaded to table ${destinationTable.id}`);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

To save query results to a permanent table, create a QueryJobConfig and set the destination to the desired TableReference. Pass the job configuration to the query method.
from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the destination table.
# table_id = "your-project.your_dataset.your_table_name"

job_config = bigquery.QueryJobConfig(destination=table_id)

sql = """
    SELECT corpus
    FROM `bigquery-public-data.samples.shakespeare`
    GROUP BY corpus;
"""

# Start the query, passing in the extra configuration.
query_job = client.query(sql, job_config=job_config)  # Make an API request.
query_job.result()  # Wait for the job to complete.

print("Query results loaded to the table {}".format(table_id))

Create a table that references an external data source

An external data source is a data source that you can query directly from BigQuery, even though the data is not stored in BigQuery storage. For example, you might have data in a different Google Cloud database, in files in Cloud Storage, or in a different cloud product altogether that you would like to analyze in BigQuery, but that you aren't prepared to migrate.

For more information, see Introduction to external data sources.

Create a table when you load data

When you load data into BigQuery, you can load data into a new table or partition, you can append data to an existing table or partition, or you can overwrite a table or partition. You don't need to create an empty table before loading data into it. You can create the new table and load your data at the same time.

When you load data into BigQuery, you can supply the table or partition schema, or for supported data formats, you can use schema auto-detection.

For more information about loading data, see Introduction to loading data into BigQuery.

Control access to tables

To configure access to tables and views, you can grant an IAM role to an entity at the following levels, listed in order of range of resources allowed (largest to smallest):

You can also restrict data access within tables, by using the following methods:

Access with any resource protected by IAM is additive. For example, if an entity does not have access at the high level such as a project, you could grant the entity access at the dataset level, and then the entity will have access to the tables and views in the dataset. Similarly, if the entity does not have access at the high level or the dataset level, you could grant the entity access at the table or view level.

Granting IAM roles at a higher level in the Google Cloud resource hierarchy such as the project, folder, or organization level gives the entity access to a broad set of resources. For example, granting a role to an entity at the project level gives that entity permissions that apply to all datasets throughout the project.

Granting a role at the dataset level specifies the operations an entity is allowed to perform on tables and views in that specific dataset, even if the entity does not have access at a higher level. For information on configuring dataset-level access controls, see Controlling access to datasets.

Granting a role at the table or view level specifies the operations an entity is allowed to perform on specific tables and views, even if the entity does not have access at a higher level. For information on configuring table-level access controls, see Controlling access to tables and views.

You can also create IAM custom roles. If you create a custom role, the permissions you grant depend on the specific operations you want the entity to be able to perform.

You can't set a "deny" permission on any resource protected by IAM.

For more information about roles and permissions, see Understanding roles in the IAM documentation and the BigQuery IAM roles and permissions.

Get information about tables

You can get information or metadata about tables in the following ways:

Required permissions

At a minimum, to get information about tables, you must be granted bigquery.tables.get permissions. The following predefined IAM roles include bigquery.tables.get permissions:

  • bigquery.metadataViewer
  • bigquery.dataViewer
  • bigquery.dataOwner
  • bigquery.dataEditor
  • bigquery.admin

In addition, if a user has bigquery.datasets.create permissions, when that user creates a dataset, they are granted bigquery.dataOwner access to it. bigquery.dataOwner access gives the user the ability to retrieve table metadata.

For more information on IAM roles and permissions in BigQuery, see Access control.

Get table information

To get information about tables:

Console

  1. In the navigation panel, in the Resources section, expand your project, and then select a dataset.

  2. Click the dataset name to expand it. The tables and views in the dataset appear.

  3. Click the table name.

  4. In the Details panel, click Details to display the table's description and table information.

  5. Optionally, switch to the Schema tab to view the table's schema definition.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Issue the bq show command to display all table information. Use the --schema flag to display only table schema information. The --format flag can be used to control the output.

    If you are getting information about a table in a project other than your default project, add the project ID to the dataset in the following format: project_id:dataset.

    bq show \
    --schema \
    --format=prettyjson \
    project_id:dataset.table
    

    Where:

    • project_id is your project ID.
    • dataset is the name of the dataset.
    • table is the name of the table.

    Examples:

    Enter the following command to display all information about mytable in mydataset. mydataset is in your default project.

    bq show --format=prettyjson mydataset.mytable
    

    Enter the following command to display all information about mytable in mydataset. mydataset is in myotherproject, not your default project.

    bq show --format=prettyjson myotherproject:mydataset.mytable
    

    Enter the following command to display only schema information about mytable in mydataset. mydataset is in myotherproject, not your default project.

    bq show --schema --format=prettyjson myotherproject:mydataset.mytable
    

API

Call the tables.get method and provide any relevant parameters.

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// printTableInfo demonstrates fetching metadata from a table and printing some basic information
// to an io.Writer.
func printTableInfo(w io.Writer, projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	// tableID := "mytable"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	meta, err := client.Dataset(datasetID).Table(tableID).Metadata(ctx)
	if err != nil {
		return err
	}
	// Print basic information about the table.
	fmt.Fprintf(w, "Schema has %d top-level fields\n", len(meta.Schema))
	fmt.Fprintf(w, "Description: %s\n", meta.Description)
	fmt.Fprintf(w, "Rows in managed storage: %d\n", meta.NumRows)
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Table;
import com.google.cloud.bigquery.TableId;

public class GetTable {

  public static void runGetTable() {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "bigquery_public_data";
    String datasetName = "samples";
    String tableName = "shakespeare";
    getTable(projectId, datasetName, tableName);
  }

  public static void getTable(String projectId, String datasetName, String tableName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(projectId, datasetName, tableName);
      Table table = bigquery.getTable(tableId);
      System.out.println("Table info: " + table.getDescription());
    } catch (BigQueryException e) {
      System.out.println("Table not retrieved. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function getTable() {
  // Retrieves table named "my_table" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  // Retrieve table reference
  const dataset = bigquery.dataset(datasetId);
  const [table] = await dataset.table(tableId).get();

  console.log('Table:');
  console.log(table.metadata.tableReference);
}
getTable();

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
//$projectId = 'The Google project ID';
//$datasetId = 'The BigQuery dataset ID';
//$tableId   = 'The BigQuery table ID';

$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$table = $dataset->table($tableId);

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the model to fetch.
# table_id = 'your-project.your_dataset.your_table'

table = client.get_table(table_id)  # Make an API request.

# View table properties
print(
    "Got table '{}.{}.{}'.".format(table.project, table.dataset_id, table.table_id)
)
print("Table schema: {}".format(table.schema))
print("Table description: {}".format(table.description))
print("Table has {} rows".format(table.num_rows))

Get table information using INFORMATION_SCHEMA

INFORMATION_SCHEMA is a series of views that provide access to metadata about datasets, routines, tables, views, jobs, reservations, and streaming data.

You can query the following views to get table information:

  • Use the INFORMATION_SCHEMA.TABLES and INFORMATION_SCHEMA.TABLE_OPTIONS views to retrieve metadata about tables and views in a project.
  • Use the INFORMATION_SCHEMA.COLUMNS and INFORMATION_SCHEMA.COLUMN_FIELD_PATHS views to retrieve metadata about the columns (fields) in a table.
  • Use the INFORMATION_SCHEMA.TABLE_STORAGE views to retrieve metadata about current and historical storage usage by a table.

The TABLES and TABLE_OPTIONS views also contain high-level information about views. For detailed information, query the INFORMATION_SCHEMA.VIEWS view instead.

TABLES view

When you query the INFORMATION_SCHEMA.TABLES view, the query results contain one row for each table or view in a dataset. For detailed information about views, query the INFORMATION_SCHEMA.VIEWS view instead.

The INFORMATION_SCHEMA.TABLES view has the following schema:

Column name Data type Value
table_catalog STRING The project ID of the project that contains the dataset.
table_schema STRING The name of the dataset that contains the table or view. Also referred to as the datasetId.
table_name STRING The name of the table or view. Also referred to as the tableId.
table_type STRING The table type; one of the following:
is_insertable_into STRING YES or NO depending on whether the table supports DML INSERT statements
is_typed STRING The value is always NO
is_change_history_enabled STRING YES or NO depending on whether change history is enabled
creation_time TIMESTAMP The table's creation time
base_table_catalog STRING For table clones and table snapshots, the base table's project. Applicable only to tables with table_type set to CLONE or SNAPSHOT.
base_table_schema STRING For table clones and table snapshots, the base table's dataset. Applicable only to tables with table_type set to CLONE or SNAPSHOT.
base_table_name STRING For table clones and table snapshots, the base table's name. Applicable only to tables with table_type set to CLONE or SNAPSHOT.
snapshot_time_ms TIMESTAMP For table clones and table snapshots, the time when the clone or snapshot operation was run on the base table to create this table. If time travel was used, then this field contains the time travel timestamp. Otherwise, the snapshot_time_ms field is the same as the creation_time field. Applicable only to tables with table_type set to CLONE or SNAPSHOT.
replica_source_catalog STRING For materialized view replicas, the base materialized view's project.
replica_source_schema STRING For materialized view replicas, the base materialized view's dataset.
replica_source_name STRING For materialized view replicas, the base materialized view's name.
replication_status STRING For materialized view replicas, the status of the replication from the base materialized view to the materialized view replica; one of the following:
  • REPLICATION_STATUS_UNSPECIFIED
  • ACTIVE: Replication is active with no errors
  • SOURCE_DELETED: The source materialized view has been deleted
  • PERMISSION_DENIED: The source materialized view hasn't been authorized on the dataset that contains the source Amazon S3 BigLake tables used in the query that created the materialized view.
  • UNSUPPORTED_CONFIGURATION: There is an issue with the replica's prerequisites other than source materialized view authorization.
replication_error STRING If replication_status indicates a replication issue for a materialized view replica, replication_error provides further details about the issue.
ddl STRING The DDL statement that can be used to recreate the table, such as CREATE TABLE or CREATE VIEW
default_collation_name STRING The name of the default collation specification if it exists; otherwise, NULL.
upsert_stream_apply_watermark TIMESTAMP For tables that use change data capture (CDC), the time when row modifications were last applied. For more information, see Monitor table upsert operation progress.

Examples

Example 1:

The following example retrieves table metadata for all of the tables in the dataset named mydataset. The metadata that's returned is for all types of tables in mydataset in your default project.

mydataset contains the following tables:

  • mytable1: a standard BigQuery table
  • myview1: a BigQuery view

To run the query against a project other than your default project, add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `myproject`.mydataset.INFORMATION_SCHEMA.TABLES.

SELECT
  table_catalog, table_schema, table_name, table_type,
  is_insertable_into, creation_time, ddl
FROM
  mydataset.INFORMATION_SCHEMA.TABLES;

The result is similar to the following. For readability, some columns are excluded from the result.

+----------------+---------------+----------------+------------+--------------------+---------------------+---------------------------------------------+
| table_catalog  | table_schema  |   table_name   | table_type | is_insertable_into |    creation_time    |                     ddl                     |
+----------------+---------------+----------------+------------+--------------------+---------------------+---------------------------------------------+
| myproject      | mydataset     | mytable1       | BASE TABLE | YES                | 2018-10-29 20:34:44 | CREATE TABLE `myproject.mydataset.mytable1` |
|                |               |                |            |                    |                     | (                                           |
|                |               |                |            |                    |                     |   id INT64                                  |
|                |               |                |            |                    |                     | );                                          |
| myproject      | mydataset     | myview1        | VIEW       | NO                 | 2018-12-29 00:19:20 | CREATE VIEW `myproject.mydataset.myview1`   |
|                |               |                |            |                    |                     | AS SELECT 100 as id;                        |
+----------------+---------------+----------------+------------+--------------------+---------------------+---------------------------------------------+
Example 2:

The following example retrieves table metadata for all tables of type CLONE or SNAPSHOT from the INFORMATION_SCHEMA.TABLES view. The metadata returned is for tables in mydataset in your default project.

To run the query against a project other than your default project, add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `myproject`.mydataset.INFORMATION_SCHEMA.TABLES.

  SELECT
    table_name, table_type, base_table_catalog,
    base_table_schema, base_table_name, snapshot_time_ms
  FROM
    mydataset.INFORMATION_SCHEMA.TABLES
  WHERE
    table_type = 'CLONE'
  OR
    table_type = 'SNAPSHOT';

The result is similar to the following. For readability, some columns are excluded from the result.

  +--------------+------------+--------------------+-------------------+-----------------+---------------------+
  | table_name   | table_type | base_table_catalog | base_table_schema | base_table_name | snapshot_time_ms    |
  +--------------+------------+--------------------+-------------------+-----------------+---------------------+
  | items_clone  | CLONE      | myproject          | mydataset         | items           | 2018-10-31 22:40:05 |
  | orders_bk    | SNAPSHOT   | myproject          | mydataset         | orders          | 2018-11-01 08:22:39 |
  +--------------+------------+--------------------+-------------------+-----------------+---------------------+

Example 3:

The following example retrieves table_name and ddl columns from the INFORMATION_SCHEMA.TABLES view for the population_by_zip_2010 table in the census_bureau_usa dataset. This dataset is part of the BigQuery public dataset program.

Because the table you're querying is in another project, you add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view. In this example, the value is `bigquery-public-data`.census_bureau_usa.INFORMATION_SCHEMA.TABLES.

SELECT
  table_name, ddl
FROM
  `bigquery-public-data`.census_bureau_usa.INFORMATION_SCHEMA.TABLES
WHERE
  table_name = 'population_by_zip_2010';

The result is similar to the following:

+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
|       table_name       |                                                                                                            ddl                                                                                                             |
+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| population_by_zip_2010 | CREATE TABLE `bigquery-public-data.census_bureau_usa.population_by_zip_2010`                                                                                                                                               |
|                        | (                                                                                                                                                                                                                          |
|                        |   geo_id STRING OPTIONS(description="Geo code"),                                                                                                                                                                           |
|                        |   zipcode STRING NOT NULL OPTIONS(description="Five digit ZIP Code Tabulation Area Census Code"),                                                                                                                          |
|                        |   population INT64 OPTIONS(description="The total count of the population for this segment."),                                                                                                                             |
|                        |   minimum_age INT64 OPTIONS(description="The minimum age in the age range. If null, this indicates the row as a total for male, female, or overall population."),                                                          |
|                        |   maximum_age INT64 OPTIONS(description="The maximum age in the age range. If null, this indicates the row as having no maximum (such as 85 and over) or the row is a total of the male, female, or overall population."), |
|                        |   gender STRING OPTIONS(description="male or female. If empty, the row is a total population summary.")                                                                                                                    |
|                        | )                                                                                                                                                                                                                          |
|                        | OPTIONS(                                                                                                                                                                                                                   |
|                        |   labels=[("freebqcovid", "")]                                                                                                                                                                                             |
|                        | );                                                                                                                                                                                                                         |
+------------------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
  

TABLE_OPTIONS view

When you query the INFORMATION_SCHEMA.TABLE_OPTIONS view, the query results contain one row for each option, for each table or view in a dataset. For detailed information about views, query the INFORMATION_SCHEMA.VIEWS view instead.

The INFORMATION_SCHEMA.TABLE_OPTIONS view has the following schema:

Column name Data type Value
TABLE_CATALOG STRING The project ID of the project that contains the dataset
TABLE_SCHEMA STRING The name of the dataset that contains the table or view also referred to as the datasetId
TABLE_NAME STRING The name of the table or view also referred to as the tableId
OPTION_NAME STRING One of the name values in the options table
OPTION_TYPE STRING One of the data type values in the options table
OPTION_VALUE STRING One of the value options in the options table
Options table

OPTION_NAME

OPTION_TYPE

OPTION_VALUE

description

STRING

A description of the table

enable_refresh

BOOL

Whether automatic refresh is enabled for a materialized view

expiration_timestamp

TIMESTAMP

The time when this table expires

friendly_name

STRING

The table's descriptive name

kms_key_name

STRING

The name of the Cloud KMS key used to encrypt the table

labels

ARRAY<STRUCT<STRING, STRING>>

An array of STRUCT's that represent the labels on the table

partition_expiration_days

FLOAT64

The default lifetime, in days, of all partitions in a partitioned table

refresh_interval_minutes

FLOAT64

How frequently a materialized view is refreshed

require_partition_filter

BOOL

Whether queries over the table require a partition filter

tags

ARRAY<STRUCT<STRING, STRING>>

Tags attached to a table in a namespaced <key, value> syntax. For more information, see Tags and conditional access.

For external tables, the following options are possible:

Options
allow_jagged_rows

BOOL

If true, allow rows that are missing trailing optional columns.

Applies to CSV data.

allow_quoted_newlines

BOOL

If true, allow quoted data sections that contain newline characters in the file.

Applies to CSV data.

bigtable_options

STRING

Only required when creating a Bigtable external table.

Specifies the schema of the Bigtable external table in JSON format.

For a list of Bigtable table definition options, see BigtableOptions in the REST API reference.

column_name_character_map

STRING

Defines the scope of supported column name characters and the handling behavior of unsupported characters. The default setting is STRICT, which means unsupported characters cause BigQuery to throw errors. V1 and V2 replace any unsupported characters with underscores.

Supported values include:

  • STRICT. Enables flexible column names. This is the default value. Load jobs with unsupported characters in column names fail with an error message. To configure the replacement of unsupported characters with underscores so that the load job succeeds, specify the default_column_name_character_map configuration setting.
  • V1. Column names can only contain standard column name characters. Unsupported characters are replaced with underscores. This is the default behavior for tables created before the introduction of column_name_character_map.
  • V2. Besides standard column name characters, it also supports flexible column names. Unsupported characters are replaced with underscores.
  • Applies to CSV and Parquet data.

compression

STRING

The compression type of the data source. Supported values include: GZIP. If not specified, the data source is uncompressed.

Applies to CSV and JSON data.

decimal_target_types

ARRAY<STRING>

Determines how to convert a Decimal type. Equivalent to ExternalDataConfiguration.decimal_target_types

Example: ["NUMERIC", "BIGNUMERIC"].

description

STRING

A description of this table.

enable_list_inference

BOOL

If true, use schema inference specifically for Parquet LIST logical type.

Applies to Parquet data.

enable_logical_types

BOOL

If true, convert Avro logical types into their corresponding SQL types. For more information, see Logical types.

Applies to Avro data.

encoding

STRING

The character encoding of the data. Supported values include: UTF8 (or UTF-8), ISO_8859_1 (or ISO-8859-1).

Applies to CSV data.

enum_as_string

BOOL

If true, infer Parquet ENUM logical type as STRING instead of BYTES by default.

Applies to Parquet data.

expiration_timestamp

TIMESTAMP

The time when this table expires. If not specified, the table does not expire.

Example: "2025-01-01 00:00:00 UTC".

field_delimiter

STRING

The separator for fields in a CSV file.

Applies to CSV data.

format

STRING

The format of the external data. Supported values for CREATE EXTERNAL TABLE include: AVRO, CLOUD_BIGTABLE, CSV, DATASTORE_BACKUP, DELTA_LAKE (preview), GOOGLE_SHEETS, NEWLINE_DELIMITED_JSON (or JSON), ORC, PARQUET.

Supported values for LOAD DATA include: AVRO, CSV, DELTA_LAKE (preview) NEWLINE_DELIMITED_JSON (or JSON), ORC, PARQUET.

The value JSON is equivalent to NEWLINE_DELIMITED_JSON.

hive_partition_uri_prefix

STRING

A common prefix for all source URIs before the partition key encoding begins. Applies only to hive-partitioned external tables.

Applies to Avro, CSV, JSON, Parquet, and ORC data.

Example: "gs://bucket/path".

file_set_spec_type

STRING

Specifies how to interpret source URIs for load jobs and external tables.

Supported values include:

  • FILE_SYSTEM_MATCH. Expands source URIs by listing files from the object store. This is the default behavior if FileSetSpecType is not set.
  • NEW_LINE_DELIMITED_MANIFEST. Indicates that the provided URIs are newline-delimited manifest files, with one URI per line. Wildcard URIs are not supported in the manifest files, and all referenced data files must be in the same bucket as the manifest file.

For example, if you have a source URI of "gs://bucket/path/file" and the file_set_spec_type is FILE_SYSTEM_MATCH, then the file is used directly as a data file. If the file_set_spec_type is NEW_LINE_DELIMITED_MANIFEST, then each line in the file is interpreted as a URI that points to a data file.

ignore_unknown_values

BOOL

If true, ignore extra values that are not represented in the table schema, without returning an error.

Applies to CSV and JSON data.

json_extension

STRING

For JSON data, indicates a particular JSON interchange format. If not specified, BigQuery reads the data as generic JSON records.

Supported values include:
GEOJSON. Newline-delimited GeoJSON data. For more information, see Creating an external table from a newline-delimited GeoJSON file.

max_bad_records

INT64

The maximum number of bad records to ignore when reading the data.

Applies to: CSV, JSON, and Google Sheets data.

max_staleness

INTERVAL

Applicable for BigLake tables and object tables.

Specifies whether cached metadata is used by operations against the table, and how fresh the cached metadata must be in order for the operation to use it.

To disable metadata caching, specify 0. This is the default.

To enable metadata caching, specify an interval literal value between 30 minutes and 7 days. For example, specify INTERVAL 4 HOUR for a 4 hour staleness interval. With this value, operations against the table use cached metadata if it has been refreshed within the past 4 hours. If the cached metadata is older than that, the operation falls back to retrieving metadata from Cloud Storage instead.

null_marker

STRING

The string that represents NULL values in a CSV file.

Applies to CSV data.

object_metadata

STRING

Only required when creating an object table.

Set the value of this option to SIMPLE when creating an object table.

preserve_ascii_control_characters

BOOL

If true, then the embedded ASCII control characters which are the first 32 characters in the ASCII table, ranging from '\x00' to '\x1F', are preserved.

Applies to CSV data.

projection_fields

STRING

A list of entity properties to load.

Applies to Datastore data.

quote

STRING

The string used to quote data sections in a CSV file. If your data contains quoted newline characters, also set the allow_quoted_newlines property to true.

Applies to CSV data.

reference_file_schema_uri

STRING

User provided reference file with the table schema.

Applies to Parquet/ORC/AVRO data.

Example: "gs://bucket/path/reference_schema_file.parquet".

require_hive_partition_filter

BOOL

If true, all queries over this table require a partition filter that can be used to eliminate partitions when reading data. Applies only to hive-partitioned external tables.

Applies to Avro, CSV, JSON, Parquet, and ORC data.

sheet_range

STRING

Range of a Google Sheets spreadsheet to query from.

Applies to Google Sheets data.

Example: "sheet1!A1:B20",

skip_leading_rows

INT64

The number of rows at the top of a file to skip when reading the data.

Applies to CSV and Google Sheets data.

uris

For external tables, including object tables, that aren't Bigtable tables:

ARRAY<STRING>

An array of fully qualified URIs for the external data locations. Each URI can contain one asterisk (*) wildcard character, which must come after the bucket name. When you specify uris values that target multiple files, all of those files must share a compatible schema.

The following examples show valid uris values:

  • ['gs://bucket/path1/myfile.csv']
  • ['gs://bucket/path1/*.csv']
  • ['gs://bucket/path1/*', 'gs://bucket/path2/file00*']

For Bigtable tables:

STRING

The URI identifying the Bigtable table to use as a data source. You can only specify one Bigtable URI.

Example: https://googleapis.com/bigtable/projects/project_id/instances/instance_id[/appProfiles/app_profile]/tables/table_name

For more information on constructing a Bigtable URI, see Retrieving the Bigtable URI.

Examples

Example 1:

The following example retrieves the default table expiration times for all tables in mydataset in your default project (myproject) by querying the INFORMATION_SCHEMA.TABLE_OPTIONS view.

To run the query against a project other than your default project, add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `myproject`.mydataset.INFORMATION_SCHEMA.TABLE_OPTIONS.

  SELECT
    *
  FROM
    mydataset.INFORMATION_SCHEMA.TABLE_OPTIONS
  WHERE
    option_name = 'expiration_timestamp';

The result is similar to the following:

  +----------------+---------------+------------+----------------------+-------------+--------------------------------------+
  | table_catalog  | table_schema  | table_name |     option_name      | option_type |             option_value             |
  +----------------+---------------+------------+----------------------+-------------+--------------------------------------+
  | myproject      | mydataset     | mytable1   | expiration_timestamp | TIMESTAMP   | TIMESTAMP "2020-01-16T21:12:28.000Z" |
  | myproject      | mydataset     | mytable2   | expiration_timestamp | TIMESTAMP   | TIMESTAMP "2021-01-01T21:12:28.000Z" |
  +----------------+---------------+------------+----------------------+-------------+--------------------------------------+
  

Example 2:

The following example retrieves metadata about all tables in mydataset that contain test data. The query uses the values in the description option to find tables that contain "test" anywhere in the description. mydataset is in your default project — myproject.

To run the query against a project other than your default project, add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `myproject`.mydataset.INFORMATION_SCHEMA.TABLE_OPTIONS.

  SELECT
    *
  FROM
    mydataset.INFORMATION_SCHEMA.TABLE_OPTIONS
  WHERE
    option_name = 'description'
    AND option_value LIKE '%test%';

The result is similar to the following:

  +----------------+---------------+------------+-------------+-------------+--------------+
  | table_catalog  | table_schema  | table_name | option_name | option_type | option_value |
  +----------------+---------------+------------+-------------+-------------+--------------+
  | myproject      | mydataset     | mytable1   | description | STRING      | "test data"  |
  | myproject      | mydataset     | mytable2   | description | STRING      | "test data"  |
  +----------------+---------------+------------+-------------+-------------+--------------+
  

COLUMNS view

When you query the INFORMATION_SCHEMA.COLUMNS view, the query results contain one row for each column (field) in a table.

The INFORMATION_SCHEMA.COLUMNS view has the following schema:

Column name Data type Value
TABLE_CATALOG STRING The project ID of the project that contains the dataset
TABLE_SCHEMA STRING The name of the dataset that contains the table also referred to as the datasetId
TABLE_NAME STRING The name of the table or view also referred to as the tableId
COLUMN_NAME STRING The name of the column
ORDINAL_POSITION INT64 The 1-indexed offset of the column within the table; if it's a pseudo column such as _PARTITIONTIME or _PARTITIONDATE, the value is NULL
IS_NULLABLE STRING YES or NO depending on whether the column's mode allows NULL values
DATA_TYPE STRING The column's GoogleSQL data type
IS_GENERATED STRING The value is always NEVER
GENERATION_EXPRESSION STRING The value is always NULL
IS_STORED STRING The value is always NULL
IS_HIDDEN STRING YES or NO depending on whether the column is a pseudo column such as _PARTITIONTIME or _PARTITIONDATE
IS_UPDATABLE STRING The value is always NULL
IS_SYSTEM_DEFINED STRING YES or NO depending on whether the column is a pseudo column such as _PARTITIONTIME or _PARTITIONDATE
IS_PARTITIONING_COLUMN STRING YES or NO depending on whether the column is a partitioning column
CLUSTERING_ORDINAL_POSITION INT64 The 1-indexed offset of the column within the table's clustering columns; the value is NULL if the table is not a clustered table
COLLATION_NAME STRING The name of the collation specification if it exists; otherwise, NULL

If a STRING or ARRAY<STRING> is passed in, the collation specification is returned if it exists; otherwise NULL is returned
COLUMN_DEFAULT STRING The default value of the column if it exists; otherwise, the value is NULL
ROUNDING_MODE STRING The mode of rounding that's used for values written to the field if its type is a parameterized NUMERIC or BIGNUMERIC; otherwise, the value is NULL

Examples

The following example retrieves metadata from the INFORMATION_SCHEMA.COLUMNS view for the population_by_zip_2010 table in the census_bureau_usa dataset. This dataset is part of the BigQuery public dataset program.

Because the table you're querying is in another project, the bigquery-public-data project, you add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `bigquery-public-data`.census_bureau_usa.INFORMATION_SCHEMA.TABLES.

The following columns are excluded from the query results because they are currently reserved for future use:

  • IS_GENERATED
  • GENERATION_EXPRESSION
  • IS_STORED
  • IS_UPDATABLE
  SELECT
    * EXCEPT(is_generated, generation_expression, is_stored, is_updatable)
  FROM
    `bigquery-public-data`.census_bureau_usa.INFORMATION_SCHEMA.COLUMNS
  WHERE
    table_name = 'population_by_zip_2010';

The result is similar to the following. For readability, some columns are excluded from the result.

+------------------------+-------------+------------------+-------------+-----------+-----------+-------------------+------------------------+-----------------------------+
|       table_name       | column_name | ordinal_position | is_nullable | data_type | is_hidden | is_system_defined | is_partitioning_column | clustering_ordinal_position |
+------------------------+-------------+------------------+-------------+-----------+-----------+-------------------+------------------------+-----------------------------+
| population_by_zip_2010 | zipcode     |                1 | NO          | STRING    | NO        | NO                | NO                     |                        NULL |
| population_by_zip_2010 | geo_id      |                2 | YES         | STRING    | NO        | NO                | NO                     |                        NULL |
| population_by_zip_2010 | minimum_age |                3 | YES         | INT64     | NO        | NO                | NO                     |                        NULL |
| population_by_zip_2010 | maximum_age |                4 | YES         | INT64     | NO        | NO                | NO                     |                        NULL |
| population_by_zip_2010 | gender      |                5 | YES         | STRING    | NO        | NO                | NO                     |                        NULL |
| population_by_zip_2010 | population  |                6 | YES         | INT64     | NO        | NO                | NO                     |                        NULL |
+------------------------+-------------+------------------+-------------+-----------+-----------+-------------------+------------------------+-----------------------------+
  

COLUMN_FIELD_PATHS view

When you query the INFORMATION_SCHEMA.COLUMN_FIELD_PATHS view, the query results contain one row for each column nested within a RECORD (or STRUCT) column.

The INFORMATION_SCHEMA.COLUMN_FIELD_PATHS view has the following schema:

Column name Data type Value
TABLE_CATALOG STRING The project ID of the project that contains the dataset
TABLE_SCHEMA STRING The name of the dataset that contains the table also referred to as the datasetId
TABLE_NAME STRING The name of the table or view also referred to as the tableId
COLUMN_NAME STRING The name of the column
FIELD_PATH STRING The path to a column nested within a `RECORD` or `STRUCT` column
DATA_TYPE STRING The column's GoogleSQL data type
DESCRIPTION STRING The column's description
COLLATION_NAME STRING The name of the collation specification if it exists; otherwise, NULL

If a STRING, ARRAY<STRING>, or STRING field in a STRUCT is passed in, the collation specification is returned if it exists; otherwise, NULL is returned
ROUNDING_MODE STRING The mode of rounding that's used when applying precision and scale to parameterized NUMERIC or BIGNUMERIC values; otherwise, the value is NULL

Examples

The following example retrieves metadata from the INFORMATION_SCHEMA.COLUMN_FIELD_PATHS view for the commits table in the github_repos dataset. This dataset is part of the BigQuery public dataset program.

Because the table you're querying is in another project, the bigquery-public-data project, you add the project ID to the dataset in the following format: `project_id`.dataset.INFORMATION_SCHEMA.view; for example, `bigquery-public-data`.github_repos.INFORMATION_SCHEMA.COLUMN_FIELD_PATHS.

The commits table contains the following nested and nested and repeated columns:

  • author: nested RECORD column
  • committer: nested RECORD column
  • trailer: nested and repeated RECORD column
  • difference: nested and repeated RECORD column

To view metadata about the author and difference columns, run the following query.

SELECT
  *
FROM
  `bigquery-public-data`.github_repos.INFORMATION_SCHEMA.COLUMN_FIELD_PATHS
WHERE
  table_name = 'commits'
  AND (column_name = 'author' OR column_name = 'difference');

The result is similar to the following. For readability, some columns are excluded from the result.

  +------------+-------------+---------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------+-------------+
  | table_name | column_name |     field_path      |                                                                      data_type                                                                      | description |
  +------------+-------------+---------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------+-------------+
  | commits    | author      | author              | STRUCT<name STRING, email STRING, time_sec INT64, tz_offset INT64, date TIMESTAMP>                                                                  | NULL        |
  | commits    | author      | author.name         | STRING                                                                                                                                              | NULL        |
  | commits    | author      | author.email        | STRING                                                                                                                                              | NULL        |
  | commits    | author      | author.time_sec     | INT64                                                                                                                                               | NULL        |
  | commits    | author      | author.tz_offset    | INT64                                                                                                                                               | NULL        |
  | commits    | author      | author.date         | TIMESTAMP                                                                                                                                           | NULL        |
  | commits    | difference  | difference          | ARRAY<STRUCT<old_mode INT64, new_mode INT64, old_path STRING, new_path STRING, old_sha1 STRING, new_sha1 STRING, old_repo STRING, new_repo STRING>> | NULL        |
  | commits    | difference  | difference.old_mode | INT64                                                                                                                                               | NULL        |
  | commits    | difference  | difference.new_mode | INT64                                                                                                                                               | NULL        |
  | commits    | difference  | difference.old_path | STRING                                                                                                                                              | NULL        |
  | commits    | difference  | difference.new_path | STRING                                                                                                                                              | NULL        |
  | commits    | difference  | difference.old_sha1 | STRING                                                                                                                                              | NULL        |
  | commits    | difference  | difference.new_sha1 | STRING                                                                                                                                              | NULL        |
  | commits    | difference  | difference.old_repo | STRING                                                                                                                                              | NULL        |
  | commits    | difference  | difference.new_repo | STRING                                                                                                                                              | NULL        |
  +------------+-------------+---------------------+-----------------------------------------------------------------------------------------------------------------------------------------------------+-------------+
  

TABLE_STORAGE view

The TABLE_STORAGE and TABLE_STORAGE_BY_ORGANIZATION views have the following schema:

Column name Data type Value
PROJECT_ID STRING The project ID of the project that contains the dataset.
PROJECT_NUMBER INT64 The project number of the project that contains the dataset.
TABLE_CATALOG STRING The project ID of the project that contains the dataset.
TABLE_SCHEMA STRING The name of the dataset that contains the table or materialized view, also referred to as the datasetId.
TABLE_NAME STRING The name of the table or materialized view, also referred to as the tableId.
CREATION_TIME TIMESTAMP The creation time of the table.
TOTAL_ROWS INT64 The total number of rows in the table or materialized view.
TOTAL_PARTITIONS INT64 The number of partitions present in the table or materialized view. Unpartitioned tables return 0.
TOTAL_LOGICAL_BYTES INT64 Total number of logical (uncompressed) bytes in the table or materialized view.
ACTIVE_LOGICAL_BYTES INT64 Number of logical (uncompressed) bytes that are younger than 90 days.
LONG_TERM_LOGICAL_BYTES INT64 Number of logical (uncompressed) bytes that are older than 90 days.
CURRENT_PHYSICAL_BYTES INT64 Total number of physical bytes for the current storage of the table across all partitions.
TOTAL_PHYSICAL_BYTES INT64 Total number of physical (compressed) bytes used for storage, including active, long-term, and time travel (deleted or changed data) bytes. Fail-safe (deleted or changed data retained after the time-travel window) bytes aren't included.
ACTIVE_PHYSICAL_BYTES INT64 Number of physical (compressed) bytes younger than 90 days, including time travel (deleted or changed data) bytes.
LONG_TERM_PHYSICAL_BYTES INT64 Number of physical (compressed) bytes older than 90 days.
TIME_TRAVEL_PHYSICAL_BYTES INT64 Number of physical (compressed) bytes used by time travel storage (deleted or changed data).
STORAGE_LAST_MODIFIED_TIME TIMESTAMP The most recent time that data was written to the table.
DELETED BOOLEAN Indicates whether or not the table is deleted.
TABLE_TYPE STRING The type of table. For example, EXTERNAL or BASE TABLE.
FAIL_SAFE_PHYSICAL_BYTES INT64 Number of physical (compressed) bytes used by the fail-safe storage (deleted or changed data).
LAST_METADATA_INDEX_REFRESH_TIME TIMESTAMP The last metadata index refresh time of the table.

Examples

Example 1:

The following example shows you the total logical bytes billed for the current project.

SELECT
  SUM(total_logical_bytes) AS total_logical_bytes
FROM
  `region-REGION`.INFORMATION_SCHEMA.TABLE_STORAGE;

The result is similar to the following:

+---------------------+
| total_logical_bytes |
+---------------------+
| 971329178274633     |
+---------------------+
Example 2:

The following example shows you how to forecast the price difference per dataset between logical and physical billing models for the next 30 days. This example assumes that future storage usage is constant over the next 30 days from the moment the query was run. Note that the forecast is limited to base tables, it excludes all other types of tables within a dataset.

The prices used in the pricing variables for this query are for the us-central1 region. If you want to run this query for a different region, update the pricing variables appropriately. See Storage pricing for pricing information.

  1. Open the BigQuery page in the Google Cloud console.

    Go to the BigQuery page

  2. Enter the following GoogleSQL query in the Query editor box. INFORMATION_SCHEMA requires GoogleSQL syntax. GoogleSQL is the default syntax in the Google Cloud console.

    DECLARE active_logical_gib_price FLOAT64 DEFAULT 0.02;
    DECLARE long_term_logical_gib_price FLOAT64 DEFAULT 0.01;
    DECLARE active_physical_gib_price FLOAT64 DEFAULT 0.04;
    DECLARE long_term_physical_gib_price FLOAT64 DEFAULT 0.02;
    
    WITH
     storage_sizes AS (
       SELECT
         table_schema AS dataset_name,
         -- Logical
         SUM(IF(deleted=false, active_logical_bytes, 0)) / power(1024, 3) AS active_logical_gib,
         SUM(IF(deleted=false, long_term_logical_bytes, 0)) / power(1024, 3) AS long_term_logical_gib,
         -- Physical
         SUM(active_physical_bytes) / power(1024, 3) AS active_physical_gib,
         SUM(active_physical_bytes - time_travel_physical_bytes) / power(1024, 3) AS active_no_tt_physical_gib,
         SUM(long_term_physical_bytes) / power(1024, 3) AS long_term_physical_gib,
         -- Restorable previously deleted physical
         SUM(time_travel_physical_bytes) / power(1024, 3) AS time_travel_physical_gib,
         SUM(fail_safe_physical_bytes) / power(1024, 3) AS fail_safe_physical_gib,
       FROM
         `region-REGION`.INFORMATION_SCHEMA.TABLE_STORAGE_BY_PROJECT
       WHERE total_physical_bytes + fail_safe_physical_bytes > 0
         -- Base the forecast on base tables only for highest precision results
         AND table_type  = 'BASE TABLE'
         GROUP BY 1
     )
    SELECT
      dataset_name,
      -- Logical
      ROUND(active_logical_gib, 2) AS active_logical_gib,
      ROUND(long_term_logical_gib, 2) AS long_term_logical_gib,
      -- Physical
      ROUND(active_physical_gib, 2) AS active_physical_gib,
      ROUND(long_term_physical_gib, 2) AS long_term_physical_gib,
      ROUND(time_travel_physical_gib, 2) AS time_travel_physical_gib,
      ROUND(fail_safe_physical_gib, 2) AS fail_safe_physical_gib,
      -- Compression ratio
      ROUND(SAFE_DIVIDE(active_logical_gib, active_no_tt_physical_gib), 2) AS active_compression_ratio,
      ROUND(SAFE_DIVIDE(long_term_logical_gib, long_term_physical_gib), 2) AS long_term_compression_ratio,
      -- Forecast costs logical
      ROUND(active_logical_gib * active_logical_gib_price, 2) AS forecast_active_logical_cost,
      ROUND(long_term_logical_gib * long_term_logical_gib_price, 2) AS forecast_long_term_logical_cost,
      -- Forecast costs physical
      ROUND((active_no_tt_physical_gib + time_travel_physical_gib + fail_safe_physical_gib) * active_physical_gib_price, 2) AS forecast_active_physical_cost,
      ROUND(long_term_physical_gib * long_term_physical_gib_price, 2) AS forecast_long_term_physical_cost,
      -- Forecast costs total
      ROUND(((active_logical_gib * active_logical_gib_price) + (long_term_logical_gib * long_term_logical_gib_price)) -
         (((active_no_tt_physical_gib + time_travel_physical_gib + fail_safe_physical_gib) * active_physical_gib_price) + (long_term_physical_gib * long_term_physical_gib_price)), 2) AS forecast_total_cost_difference
    FROM
      storage_sizes
    ORDER BY
      (forecast_active_logical_cost + forecast_active_physical_cost) DESC;
    
  3. Click Run.

The result is similar to following:

+--------------+--------------------+-----------------------+---------------------+------------------------+--------------------------+-----------------------------+------------------------------+----------------------------------+-------------------------------+----------------------------------+--------------------------------+
| dataset_name | active_logical_gib | long_term_logical_gib | active_physical_gib | long_term_physical_gib | active_compression_ratio | long_term_compression_ratio | forecast_active_logical_cost | forecaset_long_term_logical_cost | forecast_active_physical_cost | forecast_long_term_physical_cost | forecast_total_cost_difference |
+--------------+--------------------+-----------------------+---------------------+------------------------+--------------------------+-----------------------------+------------------------------+----------------------------------+-------------------------------+----------------------------------+--------------------------------+
| dataset1     |               10.0 |                  10.0 |                 1.0 |                    1.0 |                     10.0 |                        10.0 |                          0.2 |                              0.1 |                          0.04 |                             0.02 |                           0.24 |

List tables in a dataset

You can list tables in datasets in the following ways:

  • Using the Google Cloud console.
  • Using the bq command-line tool bq ls command.
  • Calling the tables.list API method.
  • Using the client libraries.

Required permissions

At a minimum, to list tables in a dataset, you must be granted bigquery.tables.list permissions. The following predefined IAM roles include bigquery.tables.list permissions:

  • bigquery.user
  • bigquery.metadataViewer
  • bigquery.dataViewer
  • bigquery.dataEditor
  • bigquery.dataOwner
  • bigquery.admin

For more information on IAM roles and permissions in BigQuery, see Access control.

List tables

To list the tables in a dataset:

Console

  1. In the Google Cloud console, in the navigation pane, click your dataset to expand it. This displays the tables and views in the dataset.

  2. Scroll through the list to see the tables in the dataset. Tables and views are identified by different icons.

bq

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. Issue the bq ls command. The --format flag can be used to control the output. If you are listing tables in a project other than your default project, add the project ID to the dataset in the following format: project_id:dataset.

    Additional flags include:

    • --max_results or -n: An integer indicating the maximum number of results. The default value is 50.
    bq ls \
    --format=pretty \
    --max_results integer \
    project_id:dataset
    

    Where:

    • integer is an integer representing the number of tables to list.
    • project_id is your project ID.
    • dataset is the name of the dataset.

    When you run the command, the Type field displays either TABLE or VIEW. For example:

    +-------------------------+-------+----------------------+-------------------+
    |         tableId         | Type  |        Labels        | Time Partitioning |
    +-------------------------+-------+----------------------+-------------------+
    | mytable                 | TABLE | department:shipping  |                   |
    | myview                  | VIEW  |                      |                   |
    +-------------------------+-------+----------------------+-------------------+
    

    Examples:

    Enter the following command to list tables in dataset mydataset in your default project.

       bq ls --format=pretty mydataset
    

    Enter the following command to return more than the default output of 50 tables from mydataset. mydataset is in your default project.

       bq ls --format=pretty --max_results 60 mydataset
    

    Enter the following command to list tables in dataset mydataset in myotherproject.

       bq ls --format=pretty myotherproject:mydataset
    

API

To list tables using the API, call the tables.list method.

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.


using Google.Cloud.BigQuery.V2;
using System;
using System.Collections.Generic;
using System.Linq;

public class BigQueryListTables
{
    public void ListTables(
        string projectId = "your-project-id",
        string datasetId = "your_dataset_id"
    )
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        // Retrieve list of tables in the dataset
        List<BigQueryTable> tables = client.ListTables(datasetId).ToList();
        // Display the results
        if (tables.Count > 0)
        {
            Console.WriteLine($"Tables in dataset {datasetId}:");
            foreach (var table in tables)
            {
                Console.WriteLine($"\t{table.Reference.TableId}");
            }
        }
        else
        {
            Console.WriteLine($"{datasetId} does not contain any tables.");
        }
    }
}

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
	"google.golang.org/api/iterator"
)

// listTables demonstrates iterating through the collection of tables in a given dataset.
func listTables(w io.Writer, projectID, datasetID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %v", err)
	}
	defer client.Close()

	ts := client.Dataset(datasetID).Tables(ctx)
	for {
		t, err := ts.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		fmt.Fprintf(w, "Table: %q\n", t.TableID)
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.api.gax.paging.Page;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQuery.TableListOption;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.DatasetId;
import com.google.cloud.bigquery.Table;

public class ListTables {

  public static void runListTables() {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "bigquery-public-data";
    String datasetName = "samples";
    listTables(projectId, datasetName);
  }

  public static void listTables(String projectId, String datasetName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      DatasetId datasetId = DatasetId.of(projectId, datasetName);
      Page<Table> tables = bigquery.listTables(datasetId, TableListOption.pageSize(100));
      tables.iterateAll().forEach(table -> System.out.print(table.getTableId().getTable() + "\n"));

      System.out.println("Tables listed successfully.");
    } catch (BigQueryException e) {
      System.out.println("Tables were not listed. Error occurred: " + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function listTables() {
  // Lists tables in 'my_dataset'.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';

  // List all tables in the dataset
  const [tables] = await bigquery.dataset(datasetId).getTables();

  console.log('Tables:');
  tables.forEach(table => console.log(table.id));
}

PHP

Before trying this sample, follow the PHP setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery PHP API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

use Google\Cloud\BigQuery\BigQueryClient;

/** Uncomment and populate these variables in your code */
// $projectId  = 'The Google project ID';
// $datasetId  = 'The BigQuery dataset ID';

$bigQuery = new BigQueryClient([
    'projectId' => $projectId,
]);
$dataset = $bigQuery->dataset($datasetId);
$tables = $dataset->tables();
foreach ($tables as $table) {
    print($table->id() . PHP_EOL);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set dataset_id to the ID of the dataset that contains
#                  the tables you are listing.
# dataset_id = 'your-project.your_dataset'

tables = client.list_tables(dataset_id)  # Make an API request.

print("Tables contained in '{}':".format(dataset_id))
for table in tables:
    print("{}.{}.{}".format(table.project, table.dataset_id, table.table_id))

Ruby

Before trying this sample, follow the Ruby setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Ruby API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

require "google/cloud/bigquery"

def list_tables dataset_id = "your_dataset_id"
  bigquery = Google::Cloud::Bigquery.new
  dataset  = bigquery.dataset dataset_id

  puts "Tables in dataset #{dataset_id}:"
  dataset.tables.each do |table|
    puts "\t#{table.table_id}"
  end
end

Table security

To control access to tables in BigQuery, see Introduction to table access controls.

What's next

Try it for yourself

If you're new to Google Cloud, create an account to evaluate how BigQuery performs in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.

Try BigQuery free