Erste Schritte mit dem OpenTelemetry Collector.

In diesem Dokument wird beschrieben, wie Sie den OpenTelemetry Collector einrichten, um Standard-Prometheus-Messwerte zu extrahieren und diese Messwerte an Google Cloud Managed Service for Prometheus zu melden. Der OpenTelemetry Collector ist ein Agent, den Sie selbst bereitstellen und für den Export nach Managed Service for Prometheus konfigurieren können. Die Einrichtung ähnelt dem Ausführen von Managed Service for Prometheus mit selbst bereitgestellter Sammlung.

Sie können den OpenTelemetry Collector aus folgenden Gründen gegenüber einer selbst bereitgestellten Sammlung auswählen:

  • Mit dem OpenTelemetry Collector können Sie Ihre Telemetriedaten an mehrere Back-Ends weiterleiten, indem Sie verschiedene Exporter in Ihrer Pipeline konfigurieren.
  • Der Collector unterstützt auch Signale von Messwerten, Logs und Traces. Mit ihm können Sie also alle drei Signaltypen in einem Agent verarbeiten.
  • Das herstellerunabhängige Datenformat von OpenTelemetry (OTLP oder OpenTelemetry Protocol) unterstützt ein starkes System von Bibliotheken und modularen Collector-Komponenten. Dadurch erhalten Sie eine Reihe von Anpassungsoptionen zum Empfangen, Verarbeiten und Exportieren Ihrer Daten.

Im Gegenzug zu diesen Vorteilen erfordert die Ausführung eines OpenTelemetry Collectors eine selbstverwaltete Bereitstellung und Wartung. Welchen Ansatz Sie wählen, hängt von Ihren konkreten Bedürfnissen ab, aber in diesem Dokument bieten wir Ihnen empfohlene Richtlinien für die Konfiguration des OpenTelemetry Collector mit Managed Service for Prometheus als Backend.

Hinweise

In diesem Abschnitt wird die Konfiguration beschrieben, die für die in diesem Dokument beschriebenen Aufgaben erforderlich ist.

Projekte und Tools einrichten

Zum Verwenden von Google Cloud Managed Service for Prometheus benötigen Sie folgende Ressourcen:

  • Ein Google Cloud-Projekt mit aktivierter Cloud Monitoring API.

    • Wenn Sie kein Google Cloud-Projekt haben, gehen Sie so vor:

      1. Wechseln Sie in der Google Cloud Console zu Neues Projekt:

        Neues Projekt erstellen

      2. Geben Sie im Feld Projektname einen Namen für Ihr Projekt ein und klicken Sie dann auf Erstellen.

      3. Wechseln Sie zu Billing (Abrechnung):

        Zur Abrechnung

      4. Wählen Sie das Projekt aus, das Sie gerade erstellt haben, falls es nicht bereits oben auf der Seite ausgewählt wurde.

      5. Sie werden aufgefordert, ein vorhandenes Zahlungsprofil auszuwählen oder ein neues Zahlungsprofil zu erstellen.

      Die Monitoring API ist für neue Projekte standardmäßig aktiviert.

    • Wenn Sie bereits ein Google Cloud-Projekt haben, muss die Monitoring API aktiviert sein:

      1. Gehen Sie zu APIs & Dienste:

        Zu APIs und Dienste

      2. Wählen Sie Ihr Projekt aus.

      3. Klicken Sie auf APIs und Dienste aktivieren.

      4. Suchen Sie nach „Monitoring“.

      5. Klicken Sie in den Suchergebnissen auf "Cloud Monitoring API".

      6. Wenn "API aktiviert" nicht angezeigt wird, klicken Sie auf die Schaltfläche Aktivieren.

  • Einen Kubernetes-Cluster. Wenn Sie keinen Kubernetes-Cluster haben, folgen Sie der Anleitung in der Kurzanleitung für GKE.

Sie benötigen außerdem die folgenden Befehlszeilentools:

  • gcloud
  • kubectl

Die Tools gcloud und kubectl sind Teil der Google Cloud CLI. Informationen zur Installation finden Sie unter Komponenten der Google Cloud-Befehlszeile verwalten. Führen Sie den folgenden Befehl aus, um die installierten gloud CLI-Komponenten aufzurufen:

gcloud components list

Konfigurierung Ihrer Umgebung

Führen Sie die folgende Konfiguration aus, um zu vermeiden, dass Sie Ihre Projekt-ID oder den Clusternamen wiederholt eingeben müssen:

  • Konfigurieren Sie die Befehlszeilentools so:

    • Konfigurieren Sie die gcloud CLI so, dass sie auf die ID Ihres Google Cloud-Projekts verweist:

      gcloud config set project PROJECT_ID
      
    • Konfigurieren Sie die kubectl-Befehlszeile für die Verwendung Ihres Clusters:

      kubectl config set-cluster CLUSTER_NAME
      

    Weitere Informationen zu diesen Tools finden Sie hier:

Namespace einrichten

Erstellen Sie den Kubernetes-Namespace NAMESPACE_NAME für Ressourcen, die Sie als Teil der Beispielanwendung erstellen:

kubectl create ns NAMESPACE_NAME

Anmeldedaten für das Dienstkonto prüfen

Sie können diesen Abschnitt überspringen, wenn in Ihrem Kubernetes-Cluster Workload Identity aktiviert ist.

Bei Ausführung in GKE ruft Managed Service for Prometheus automatisch Anmeldedaten aus der Umgebung anhand des Compute Engine-Standarddienstkontos ab. Das Standarddienstkonto hat standardmäßig die erforderlichen Berechtigungen monitoring.metricWriter und monitoring.viewer. Wenn Sie Workload Identity nicht verwenden und zuvor eine dieser Rollen aus dem Standardknotendienstkonto entfernt haben, müssen Sie diese fehlenden Berechtigungen wieder hinzufügen, bevor Sie fortfahren.

Wenn Sie nicht GKE ausführen, finden Sie weitere Informationen unter Anmeldedaten explizit angeben.

Dienstkonto für Workload Identity konfigurieren

Sie können diesen Abschnitt überspringen, wenn in Ihrem Kubernetes-Cluster Workload Identity nicht aktiviert ist.

Managed Service for Prometheus erfasst Messwertdaten mithilfe der Cloud Monitoring API. Wenn Ihr Cluster Workload Identity verwendet, müssen Sie dem Kubernetes-Dienstkonto die Berechtigung für die Monitoring API erteilen. In diesem Abschnitt wird Folgendes beschrieben:

  • Dediziertes Google Cloud-Dienstkonto gmp-test-sa erstellen
  • Google Cloud-Dienstkonto an das Standard-Kubernetes-Dienstkonto im Test-Namespace NAMESPACE_NAME binden
  • Dem Google Cloud-Dienstkonto die erforderliche Berechtigung gewähren

Dienstkonto erstellen und binden

Dieser Schritt wird an mehreren Stellen in der Dokumentation zu Managed Service for Prometheus aufgeführt. Wenn Sie diesen Schritt bereits als Teil einer vorherigen Aufgabe ausgeführt haben, müssen Sie ihn nicht wiederholen. Fahren Sie mit Dienstkonto autorisieren fort.

Mit der folgenden Befehlssequenz wird das Dienstkonto gmp-test-sa erstellt und an das Standard-Kubernetes-Dienstkonto im Namespace NAMESPACE_NAME gebunden:

gcloud config set project PROJECT_ID \
&&
gcloud iam service-accounts create gmp-test-sa \
&&
gcloud iam service-accounts add-iam-policy-binding \
  --role roles/iam.workloadIdentityUser \
  --member "serviceAccount:PROJECT_ID.svc.id.goog[NAMESPACE_NAME/default]" \
  gmp-test-sa@PROJECT_ID.iam.gserviceaccount.com \
&&
kubectl annotate serviceaccount \
  --namespace NAMESPACE_NAME \
  default \
  iam.gke.io/gcp-service-account=gmp-test-sa@PROJECT_ID.iam.gserviceaccount.com

Wenn Sie einen anderen GKE-Namespace oder ein anderes GKE-Dienstkonto verwenden, passen Sie die Befehle entsprechend an.

Dienstkonto autorisieren

Gruppen zusammengehöriger Berechtigungen werden in Rollen zusammengefasst und Sie weisen die Rollen einem Hauptkonto zu, in diesem Beispiel dem Google Cloud-Dienstkonto. Weitere Informationen zu Monitoring-Rollen finden Sie unter Zugriffssteuerung.

Mit dem folgenden Befehl werden dem Google Cloud-Dienstkonto gmp-test-sa die Monitoring API-Rollen zugewiesen, die zum Schreiben von Messwertdaten erforderlich sind.

Wenn Sie dem Google Cloud-Dienstkonto im Rahmen der vorherigen Aufgabe bereits eine bestimmte Rolle zugewiesen haben, müssen Sie dies nicht noch einmal tun.

gcloud projects add-iam-policy-binding PROJECT_ID\
  --member=serviceAccount:gmp-test-sa@PROJECT_ID.iam.gserviceaccount.com \
  --role=roles/monitoring.metricWriter

Workload Identity-Konfiguration debuggen

Wenn Sie Probleme mit der Workload Identity haben, lesen Sie die Dokumentation zum Prüfen der Workload Identity-Einrichtung und zur Fehlerbehebung bei Workload Identity.

Da Tippfehler und partielle Kopierfunktionen die häufigsten Fehlerquellen bei der Konfiguration von Workload Identity sind, empfehlen wir dringend die bearbeitbaren Variablen und anklickbaren Symbole, die in die Codebeispiele in dieser Anleitung eingebettet sind.

Workload Identity in Produktionsumgebungen

Das in diesem Dokument beschriebene Beispiel bindet das Google Cloud-Dienstkonto an das Standard-Kubernetes-Dienstkonto und gewährt dem Google Cloud-Dienstkonto alle erforderlichen Berechtigungen zur Verwendung der Monitoring API.

In einer Produktionsumgebung können Sie einen feiner abgestimmten Ansatz mit einem Dienstkonto für jede Komponente nutzen, das jeweils nur minimale Berechtigungen hat. Weitere Informationen zum Konfigurieren von Dienstkonten für die Verwaltung von Workload Identity finden Sie unter Workload Identity verwenden.

OpenTelemetry Collector einrichten

In diesem Abschnitt werden beschrieben, wie Sie den OpenTelemetry-Collector einrichten und verwenden, um Messwerte aus einer Beispielanwendung zu extrahieren und die Daten an Google Cloud Managed Service for Prometheus zu senden. Ausführliche Informationen zur Konfiguration finden Sie in den folgenden Abschnitten:

Der OpenTelemetry Collector entspricht dem Binärprogramm des Managed Service for Prometheus-Agents. Die OpenTelemetry-Community veröffentlicht regelmäßig Releases, einschließlich Quellcode, Binärprogramme und Container-Images.

Sie können diese Artefakte entweder auf VMs oder Kubernetes-Clustern mit den Best-Practices-Standardeinstellungen bereitstellen oder den Collector-Builder verwenden, um einen eigenen Collector zu erstellen, der nur aus den Komponenten besteht, die Sie benötigen. Zum Erstellen eines Collectors zur Verwendung mit Managed Service for Prometheus benötigen Sie die folgenden Komponenten:

  • Den Managed Service for Prometheus-Exporter, der Ihre Messwerte in Managed Service for Prometheus schreibt.
  • Ein Empfänger zum Scraping Ihrer Messwerte. In diesem Dokument wird davon ausgegangen, dass Sie den OpenTelemetry-Prometheus-Empfänger verwenden. Der Managed Service for Prometheus-Exporter ist jedoch mit jedem OpenTelemetry-Messwertempfänger kompatibel.
  • Prozessoren zum Batching und Markup von Messwerten, um je nach Umgebung wichtige Ressourcenkennungen zu enthalten.

Diese Komponenten werden mithilfe einer Konfigurationsdatei aktiviert, die mit dem Flag --config an den Collector übergeben wird.

In den folgenden Abschnitten wird die Konfiguration der einzelnen Komponenten genauer erläutert. In diesem Dokument wird beschrieben, wie Sie den Collector in GKE und an einem anderen Ort ausführen.

Collector konfigurieren und bereitstellen

Unabhängig davon, ob Sie Ihre Sammlung in Google Cloud oder in einer anderen Umgebung ausführen, können Sie den OpenTelemetry Collector für den Export nach Managed Service for Prometheus konfigurieren. Der größte Unterschied besteht in der Konfiguration des Collectors. In Nicht-Google Cloud-Umgebungen müssen Messwertdaten möglicherweise zusätzlich formatiert werden, damit sie mit Managed Service for Prometheus kompatibel sind. In Google Cloud kann jedoch ein Großteil dieser Formatierungen automatisch vom Collector erkannt werden.

OpenTelemetry Collector in GKE ausführen

Sie können die folgende Konfiguration in eine Datei mit dem Namen config.yaml kopieren, um den OpenTelemetry Collector in GKE einzurichten:

receivers:
  prometheus:
    config:
      scrape_configs:
      - job_name: 'SCRAPE_JOB_NAME'
        kubernetes_sd_configs:
        - role: pod
        relabel_configs:
        - source_labels: [__meta_kubernetes_pod_label_app_kubernetes_io_name]
          action: keep
          regex: prom-example
        - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
          action: replace
          target_label: __metrics_path__
          regex: (.+)
        - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
          action: replace
          regex: (.+):(?:\d+);(\d+)
          replacement: $1:$2
          target_label: __address__
        - action: labelmap
          regex: __meta_kubernetes_pod_label_(.+)

processors:
  resourcedetection:
    detectors: [gcp]
    timeout: 10s

  transform:
    # "location", "cluster", "namespace", "job", "instance", and "project_id" are reserved, and
    # metrics containing these labels will be rejected.  Prefix them with exported_ to prevent this.
    metric_statements:
    - context: datapoint
      statements:
      - set(attributes["exported_location"], attributes["location"])
      - delete_key(attributes, "location")
      - set(attributes["exported_cluster"], attributes["cluster"])
      - delete_key(attributes, "cluster")
      - set(attributes["exported_namespace"], attributes["namespace"])
      - delete_key(attributes, "namespace")
      - set(attributes["exported_job"], attributes["job"])
      - delete_key(attributes, "job")
      - set(attributes["exported_instance"], attributes["instance"])
      - delete_key(attributes, "instance")
      - set(attributes["exported_project_id"], attributes["project_id"])
      - delete_key(attributes, "project_id")

  batch:
    # batch metrics before sending to reduce API usage
    send_batch_max_size: 200
    send_batch_size: 200
    timeout: 5s

  memory_limiter:
    # drop metrics if memory usage gets too high
    check_interval: 1s
    limit_percentage: 65
    spike_limit_percentage: 20

# Note that the googlemanagedprometheus exporter block is intentionally blank
exporters:
  googlemanagedprometheus:

service:
  pipelines:
    metrics:
      receivers: [prometheus]
      processors: [batch, memory_limiter, resourcedetection, transform]
      exporters: [googlemanagedprometheus]

Die vorherige Konfiguration verwendet den Prometheus-Empfänger und den Managed Service for Prometheus-Exporter, um die Messwertendpunkte auf Kubernetes-Pods zu extrahieren und diese Messwerte nach Managed Service for Prometheus zu exportieren. Die Pipelineprozessoren formatieren und verarbeiten die Daten im Batch.

Weitere Informationen zur Funktionsweise der einzelnen Teile dieser Konfiguration sowie Konfigurationen für verschiedene Plattformen finden Sie in den folgenden Abschnitten unter Messwerte extrahieren undProzessoren hinzufügen.

Ersetzen Sie bei der Ausführung in Clustern mit einer vorhandenen Prometheus-Konfiguration alle $-Zeichen durch $$, um das Auslösen der Umgebungsvariablen zu vermeiden. Weitere Informationen finden Sie unter Prometheus-Messwerte extrahieren.

Sie können diese Konfiguration basierend auf Ihrer Umgebung, Ihrem Anbieter und den zu extrahierenden Messwerten ändern. Die Beispielkonfiguration ist jedoch ein empfohlener Ausgangspunkt für die Ausführung in GKE.

OpenTelemetry Collector außerhalb von Google Cloud ausführen

Das Ausführen des OpenTelemetry Collector außerhalb von Google Cloud, z. B. lokal oder bei anderen Cloudanbietern, ähnelt dem Ausführen des Collectors in GKE. Bei den extrahierten Messwerten ist es jedoch weniger wahrscheinlich, dass sie automatisch Daten enthalten, die sie für Managed Service for Prometheus am besten formatieren. Daher müssen Sie den Collector so konfigurieren, dass die Messwerte formatiert werden, damit sie mit Managed Service for Prometheus kompatibel sind.

Sie können die folgende Konfiguration in eine Datei namens config.yaml kopieren, um den OpenTelemetry Collector für die Bereitstellung in einem Nicht-GKE-Kubernetes-Cluster einzurichten:

receivers:
  prometheus:
    config:
      scrape_configs:
      - job_name: 'SCRAPE_JOB_NAME'
        kubernetes_sd_configs:
        - role: pod
        relabel_configs:
        - source_labels: [__meta_kubernetes_pod_label_app_kubernetes_io_name]
          action: keep
          regex: prom-example
        - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
          action: replace
          target_label: __metrics_path__
          regex: (.+)
        - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
          action: replace
          regex: (.+):(?:\d+);(\d+)
          replacement: $1:$2
          target_label: __address__
        - action: labelmap
          regex: __meta_kubernetes_pod_label_(.+)

processors:
  resource:
    attributes:
    - key: "cluster"
      value: "CLUSTER_NAME"
      action: upsert
    - key: "namespace"
      value: "NAMESPACE_NAME"
      action: upsert
    - key: "location"
      value: "REGION"
      action: upsert

  transform:
    # "location", "cluster", "namespace", "job", "instance", and "project_id" are reserved, and
    # metrics containing these labels will be rejected.  Prefix them with exported_ to prevent this.
    metric_statements:
    - context: datapoint
      statements:
      - set(attributes["exported_location"], attributes["location"])
      - delete_key(attributes, "location")
      - set(attributes["exported_cluster"], attributes["cluster"])
      - delete_key(attributes, "cluster")
      - set(attributes["exported_namespace"], attributes["namespace"])
      - delete_key(attributes, "namespace")
      - set(attributes["exported_job"], attributes["job"])
      - delete_key(attributes, "job")
      - set(attributes["exported_instance"], attributes["instance"])
      - delete_key(attributes, "instance")
      - set(attributes["exported_project_id"], attributes["project_id"])
      - delete_key(attributes, "project_id")

  batch:
    # batch metrics before sending to reduce API usage
    send_batch_max_size: 200
    send_batch_size: 200
    timeout: 5s

  memory_limiter:
    # drop metrics if memory usage gets too high
    check_interval: 1s
    limit_percentage: 65
    spike_limit_percentage: 20

exporters:
  googlemanagedprometheus:
    project: "PROJECT_ID"

service:
  pipelines:
    metrics:
      receivers: [prometheus]
      processors: [batch, memory_limiter, resource, transform]
      exporters: [googlemanagedprometheus]

Diese Konfiguration tut Folgendes:

  • Richtet eine Kubernetes-Service Discovery-Konfiguration für Prometheus ein. Weitere Informationen finden Sie unter Prometheus-Messwerte extrahieren.
  • Legt manuell die Ressourcenattribute cluster, namespace und location fest. Weitere Informationen zu Ressourcenattributen, einschließlich der Ressourcenerkennung für Amazon EKS und Azure AKS, finden Sie unter Ressourcenattribute erkennen.
  • Legt die Option project im Exporter googlemanagedprometheus fest. Weitere Informationen zum Exporter finden Sie unter googlemanagedprometheus-Exporter konfigurieren.

Ersetzen Sie bei der Ausführung in Clustern mit einer vorhandenen Prometheus-Konfiguration alle $-Zeichen durch $$, um das Auslösen der Umgebungsvariablen zu vermeiden. Weitere Informationen finden Sie unter Prometheus-Messwerte extrahieren.

Informationen zu Best Practices für die Konfiguration des Collectors in anderen Clouds finden Sie unter Amazon EKS oder Azure AKS.

Beispielanwendung bereitstellen

Die Beispielanwendung gibt den Zählermesswert example_requests_total und den Histogrammmesswert example_random_numbers (unter anderem) am Port metrics aus. Das Manifest für dieses Beispiel definiert drei Replikate.

Führen Sie den folgenden Befehl aus, um die Beispielanwendung bereitzustellen:

kubectl -n NAMESPACE_NAME apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/prometheus-engine/v0.10.0/examples/example-app.yaml

Collector-Konfiguration als ConfigMap erstellen

Nachdem Sie Ihre Konfiguration erstellt und in einer Datei mit dem Namen config.yaml abgelegt haben, verwenden Sie diese Datei, um eine Kubernetes-ConfigMap anhand der Datei config.yaml zu erstellen. Wenn der Collector bereitgestellt wird, stellt er die ConfigMap bereit und lädt die Datei.

Verwenden Sie den folgenden Befehl, um eine ConfigMap mit dem Namen otel-config mit Ihrer Konfiguration zu erstellen:

kubectl -n NAMESPACE_NAME create configmap otel-config --from-file config.yaml

Collector bereitstellen

Erstellen Sie eine Datei mit dem Namen collector-deployment.yaml und mit folgendem Inhalt:

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: NAMESPACE_NAME:prometheus-test
rules:
- apiGroups: [""]
  resources:
  - pods
  verbs: ["get", "list", "watch"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: NAMESPACE_NAME:prometheus-test
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: NAMESPACE_NAME:prometheus-test
subjects:
- kind: ServiceAccount
  namespace: NAMESPACE_NAME
  name: default
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: otel-collector
spec:
  replicas: 1
  selector:
    matchLabels:
      app: otel-collector
  template:
    metadata:
      labels:
        app: otel-collector
    spec:
      containers:
      - name: otel-collector
        image: otel/opentelemetry-collector-contrib:0.92.0
        args:
        - --config
        - /etc/otel/config.yaml
        volumeMounts:
        - mountPath: /etc/otel/
          name: otel-config
      volumes:
      - name: otel-config
        configMap:
          name: otel-config

Erstellen Sie die Collector-Bereitstellung in Ihrem Kubernetes-Cluster, indem Sie den folgenden Befehl ausführen:

kubectl -n NAMESPACE_NAME create -f collector-deployment.yaml

Nachdem der Pod gestartet wurde, extrahiert er die Beispielanwendung und meldet Messwerte an Managed Service for Prometheus.

Informationen zum Abfragen Ihrer Daten finden Sie unter Abfragen mit Cloud Monitoring oder Abfragen mit Grafana.

Anmeldedaten explizit angeben

Bei der Ausführung in GKE ruft der OpenTelemetry Collector automatisch Anmeldedaten aus der Umgebung anhand des Dienstkontos des Knotens ab. In Nicht-GKE-Kubernetes-Clustern müssen Anmeldedaten explizit mit Flags oder der Umgebungsvariablen GOOGLE_APPLICATION_CREDENTIALS für den OpenTelemetry Collector bereitgestellt werden.

  1. Legen Sie den Kontext auf Ihr Zielprojekt fest:

    gcloud config set project PROJECT_ID
    
  2. Erstellen Sie ein Dienstkonto:

    gcloud iam service-accounts create gmp-test-sa
    

    Mit diesem Schritt wird das Dienstkonto erstellt, das Sie möglicherweise bereits in der Workload Identity-Anleitung erstellt haben.

  3. Gewähren Sie die erforderlichen Berechtigungen für das Dienstkonto:

    gcloud projects add-iam-policy-binding PROJECT_ID\
      --member=serviceAccount:gmp-test-sa@PROJECT_ID.iam.gserviceaccount.com \
      --role=roles/monitoring.metricWriter
    

  4. Erstellen Sie einen Schlüssel für das Dienstkonto und laden Sie ihn herunter:

    gcloud iam service-accounts keys create gmp-test-sa-key.json \
      --iam-account=gmp-test-sa@PROJECT_ID.iam.gserviceaccount.com
    
  5. Fügen Sie dem Nicht-GKE-Cluster die Schlüsseldatei als Secret hinzu:

    kubectl -n NAMESPACE_NAME create secret generic gmp-test-sa \
      --from-file=key.json=gmp-test-sa-key.json
    

  6. Öffnen Sie die OpenTelemetry-Deployment-Ressource zur Bearbeitung:

    kubectl -n NAMESPACE_NAME edit deployment otel-collector
    
  1. Fügen Sie der Ressource den fett formatierten Text hinzu:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      namespace: NAMESPACE_NAME
      name: otel-collector
    spec:
      template
        spec:
          containers:
          - name: otel-collector
            env:
            - name: "GOOGLE_APPLICATION_CREDENTIALS"
              value: "/gmp/key.json"
    ...
            volumeMounts:
            - name: gmp-sa
              mountPath: /gmp
              readOnly: true
    ...
          volumes:
          - name: gmp-sa
            secret:
              secretName: gmp-test-sa
    ...
    

  2. Speichern Sie die Datei und schließen Sie den Editor. Nachdem die Änderung angewendet wurde, werden die Pods neu erstellt und beginnen mit der Authentifizierung beim Messwert-Backend mit dem angegebenen Dienstkonto.

Prometheus-Messwerte extrahieren

Dieser und der nachfolgende Abschnitt enthalten zusätzliche Informationen zur Anpassung des OpenTelemetry Collector. Diese Informationen können in bestimmten Situationen hilfreich sein, aber nichts davon ist erforderlich, um das unter OpenTelemetry Collector einrichten beschriebene Beispiel auszuführen.

Wenn Ihre Anwendungen bereits Prometheus-Endpunkte verfügbar machen, kann der OpenTelemetry Collector diese Endpunkte mit demselben Extraktionskonfigurationsformat extrahieren, das Sie mit jeder Prometheus-Standardkonfiguration verwenden würden. Aktivieren Sie dazu den Prometheus-Empfänger in Ihrer Collector-Konfiguration.

Eine einfache Prometheus-Empfängerkonfiguration für Kubernetes-Pods könnte so aussehen:

receivers:
  prometheus:
    config:
      scrape_configs:
      - job_name: 'kubernetes-pods'
        kubernetes_sd_configs:
        - role: pod
        relabel_configs:
        - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
          action: keep
          regex: true
        - source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
          action: replace
          target_label: __metrics_path__
          regex: (.+)
        - source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
          action: replace
          regex: (.+):(?:\d+);(\d+)
          replacement: $1:$2
          target_label: __address__
        - action: labelmap
          regex: __meta_kubernetes_pod_label_(.+)

service:
  pipelines:
    metrics:
      receivers: [prometheus]

Dies ist eine einfache Service Discovery-basierte Extraktionskonfiguration, die Sie nach Bedarf ändern können.

Ersetzen Sie bei der Ausführung in Clustern mit einer vorhandenen Prometheus-Konfiguration alle $-Zeichen durch $$, um das Auslösen der Umgebungsvariablen zu vermeiden. Dies ist besonders wichtig für den replacement-Wert im Abschnitt relabel_configs. Als Beispiel der folgende Abschnitt relabel_config:

- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
  action: replace
  regex: (.+):(?:\d+);(\d+)
  replacement: $1:$2
  target_label: __address__

Schreiben Sie ihn dann so um:

- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
  action: replace
  regex: (.+):(?:\d+);(\d+)
  replacement: $$1:$$2
  target_label: __address__

Weitere Informationen finden Sie in der OpenTelemetry-Dokumentation.

Als Nächstes empfehlen wir dringend, Prozessoren zum Formatieren Ihrer Messwerte zu verwenden. In vielen Fällen müssen Prozessoren verwendet werden, um Ihre Messwerte ordnungsgemäß zu formatieren.

Prozessoren hinzufügen

OpenTelemetry-Prozessoren ändern Telemetriedaten, bevor sie exportiert werden. Sie können die folgenden Prozessoren verwenden, um dafür zu sorgen, dass Ihre Messwerte in einem Format geschrieben werden, das mit Managed Service for Prometheus kompatibel ist.

Ressourcenattribute erkennen

Der Managed Service for Prometheus-Exporter für OpenTelemetry verwendet die überwachte Ressource prometheus_target, um Zeitreihendatenpunkte eindeutig zu identifizieren. Der Exporter parst die erforderlichen überwachte Ressourcen Felder aus Ressourcenattributen auf den Messwertdatenpunkten. Aus den folgenden Feldern und Attributen werden die Werte extrahiert:

  • project_id: automatisch erkannt von den Standardanmeldedaten für Anwendungen, gcp.project.id oder project in der Exporter-Konfiguration (siehe Exporter konfigurieren)
  • Standort: location, cloud.availability_zone, cloud.region
  • Cluster: cluster, k8s.cluster_name
  • Namespace: namespace, k8s.namespace_name
  • Job: service.name + service.namespace
  • Instanz: service.instance.id

Wenn diese Labels nicht auf eindeutige Werte festgelegt werden, können beim Exportieren nach Managed Service for Prometheus Fehler des Typs "doppelte Zeitreihe" auftreten.

Der Prometheus-Empfänger legt automatisch das service.name-Attribut anhand des job_name in der Extraktionskonfiguration und das service.instance.id-Attribut auf Basis des instance des Extraktionsziels fest. Der Empfänger legt auch k8s.namespace.name fest, wenn role: pod in der Extraktionskonfiguration verwendet wird.

Wir empfehlen, die anderen Attribute automatisch mit dem Ressourcenerkennungsprozessor auszufüllen. Je nach Umgebung werden einige Attribute jedoch möglicherweise nicht automatisch erkannt. In diesem Fall können Sie diese Werte mit anderen Prozessoren manuell einfügen oder aus Messwertlabels parsen. In den folgenden Abschnitten werden Konfigurationen für diese Verarbeitung auf verschiedenen Plattformen dargestellt.

GKE

Wenn Sie OpenTelemetry in GKE ausführen, müssen Sie nur den Ressourcenerkennungsprozessor aktivieren, um die Ressourcenlabels auszufüllen. Achten Sie darauf, dass Ihre Messwerte nicht bereits eines der reservierten Ressourcenlabels enthalten. Sollte dies unvermeidbar sein, lesen Sie die Informationen unter Konflikte von Ressourcenattributen durch Umbenennen von Attributen vermeiden.

processors:
  resourcedetection:
    detectors: [gcp]
    timeout: 10s

Sie können diesen Abschnitt direkt in Ihre Konfigurationsdatei kopieren. Ersetzen Sie dabei den Abschnitt processors, falls er bereits vorhanden ist.

Amazon EKS

Der EKS-Ressourcendetektor füllt die Attribute cluster und namespace nicht automatisch aus. Sie können diese Werte manuell mit dem Ressourcenverarbeiter angeben, wie im folgenden Beispiel gezeigt:

processors:
  resourcedetection:
    detectors: [eks]
    timeout: 10s

  resource:
    attributes:
    - key: "cluster"
      value: "my-eks-cluster"
      action: upsert
    - key: "namespace"
      value: "my-app"
      action: upsert

Sie können diese Werte auch mit dem Prozessor groupbyattrs aus Messwertlabels konvertieren. Weitere Informationen finden Sie unter Messwertlabels in Ressourcenlabels verschieben.

Azure AKS

Der AKS-Ressourcendetektor füllt die Attribute cluster und namespace nicht automatisch aus. Sie können diese Werte manuell mithilfe des Ressourcenverarbeiters bereitstellen, wie im folgenden Beispiel gezeigt:

processors:
  resourcedetection:
    detectors: [aks]
    timeout: 10s

  resource:
    attributes:
    - key: "cluster"
      value: "my-eks-cluster"
      action: upsert
    - key: "namespace"
      value: "my-app"
      action: upsert

Sie können diese Werte auch mit dem Prozessor groupbyattrs aus Messwertlabels konvertieren. Weitere Informationen finden Sie unter Messwertlabels in Ressourcenlabels verschieben.

Lokale und Nicht-Cloud-Umgebungen

In lokalen oder Nicht-Cloud-Umgebungen können Sie die erforderlichen Ressourcenattribute wahrscheinlich nicht automatisch erkennen. In diesem Fall können Sie diese Labels in Ihren Messwerten ausgeben und sie in Ressourcenattribute verschieben (siehe Messwertlabels in Ressourcenlabels verschieben) oder alle Ressourcenattribute manuell festlegen, wie im folgenden Beispiel gezeigt:

processors:
  resource:
    attributes:
    - key: "cluster"
      value: "my-on-prem-cluster"
      action: upsert
    - key: "namespace"
      value: "my-app"
      action: upsert
    - key: "location"
      value: "us-east-1"
      action: upsert

Unter Collector-Konfiguration als ConfigMap erstellen wird die Verwendung der Konfiguration beschrieben. In diesem Abschnitt wird davon ausgegangen, dass Sie Ihre Konfiguration in einer Datei namens config.yaml abgelegt haben.

Das Ressourcenattribut project_id kann weiterhin automatisch festgelegt werden, wenn der Collector mit Standardanmeldedaten für Anwendungen ausgeführt wird. Wenn Ihr Collector keinen Zugriff auf Standardanmeldedaten für Anwendungen hat, finden Sie weitere Informationen unter project_id festlegen.

Alternativ können Sie die benötigten Ressourcenattribute manuell in der Umgebungsvariable OTEL_RESOURCE_ATTRIBUTES mit einer durch Kommas getrennten Liste von Schlüssel/Wert-Paaren festlegen. Beispiel:

export OTEL_RESOURCE_ATTRIBUTES="cluster=my-cluster,namespace=my-app,location=us-east-1"

Verwenden Sie dann den env-Ressourcendetektorprozessor, um die Ressourcenattribute festzulegen:

processors:
  resourcedetection:
    detectors: [env]

Kollisionen von Ressourcenattributen durch Umbenennen von Attributen vermeiden

Wenn Ihre Messwerte bereits Labels enthalten, die zu einem Konflikt mit den erforderlichen Ressourcenattributen (z. B. location, cluster oder namespace) führen, benennen Sie sie um, um Konflikte zu vermeiden. Die Prometheus-Konvention besteht darin, dem Labelnamen das Präfix exported_ hinzuzufügen. Verwenden Sie den Transformationsprozessor, um dieses Präfix hinzuzufügen.

Mit der folgenden processors-Konfiguration werden alle potenziellen Konflikte umbenannt und alle in Konflikt stehenden Schlüssel aus dem Messwert behoben:

processors:
  transform:
    # "location", "cluster", "namespace", "job", "instance", and "project_id" are reserved, and
    # metrics containing these labels will be rejected.  Prefix them with exported_ to prevent this.
    metric_statements:
    - context: datapoint
      statements:
      - set(attributes["exported_location"], attributes["location"])
      - delete_key(attributes, "location")
      - set(attributes["exported_cluster"], attributes["cluster"])
      - delete_key(attributes, "cluster")
      - set(attributes["exported_namespace"], attributes["namespace"])
      - delete_key(attributes, "namespace")
      - set(attributes["exported_job"], attributes["job"])
      - delete_key(attributes, "job")
      - set(attributes["exported_instance"], attributes["instance"])
      - delete_key(attributes, "instance")
      - set(attributes["exported_project_id"], attributes["project_id"])
      - delete_key(attributes, "project_id")

Messwertlabels in Ressourcenlabels verschieben

In einigen Fällen melden Ihre Messwerte möglicherweise absichtlich Labels wie namespace, da der Exporter mehrere Namespaces überwacht. Wenn Sie beispielsweise den Exporter kube-state-metrics ausführen.

In diesem Szenario können diese Labels mit dem groupbyattrs-Prozessor in Ressourcenattribute verschoben werden:

processors:
  groupbyattrs:
    keys:
    - namespace
    - cluster
    - location

Bei einem Messwert mit den Labels namespace, cluster und/oder location im obigen Beispiel werden diese Labels in die entsprechenden Ressourcenattribute umgewandelt.

API-Anfragen und Arbeits-Speichernutzung begrenzen

Mit zwei anderen Prozessoren, der Batchverarbeitung und dem Speicherlimitprozessor, können Sie den Ressourcenverbrauch Ihres Collectors begrenzen.

Batchverarbeitung

Mit Batchanfragen können Sie definieren, wie viele Datenpunkte in einer einzelnen Anfrage gesendet werden sollen. Beachten Sie, dass in Cloud Monitoring ein Limit von 200 Zeitreihen pro Anfrage gilt. Aktivieren Sie die Batchverarbeitung mit den folgenden Einstellungen:

processors:
  batch:
    # batch metrics before sending to reduce API usage
    send_batch_max_size: 200
    send_batch_size: 200
    timeout: 5s

Arbeitsspeicherbegrenzung

Wir empfehlen die Aktivierung der Arbeitsspeicherbegrenzung, um zu verhindern, dass Ihr Collector bei Zeiten mit hohem Durchsatz abstürzt. Aktivieren Sie die Verarbeitung mithilfe der folgenden Einstellungen:

processors:
  memory_limiter:
    # drop metrics if memory usage gets too high
    check_interval: 1s
    limit_percentage: 65
    spike_limit_percentage: 20

googlemanagedprometheus-Exporter konfigurieren

Standardmäßig ist für die Verwendung des googlemanagedprometheus-Exporters in GKE keine zusätzliche Konfiguration erforderlich. In vielen Anwendungsfällen müssen Sie ihn nur mit einem leeren Block im Abschnitt exporters aktivieren:

exporters:
  googlemanagedprometheus:

Der Exporter bietet jedoch einige optionale Konfigurationseinstellungen. In den folgenden Abschnitten werden die anderen Konfigurationseinstellungen beschrieben.

Einstellen von project_id

Zum Verknüpfen Ihrer Zeitreihe mit einem Google Cloud-Projekt muss für die überwachte Ressource prometheus_target der Wert project_id festgelegt sein.

Wenn Sie OpenTelemetry in Google Cloud ausführen, legt der Managed Service for Prometheus-Exporter diesen Wert standardmäßig anhand der gefundenen Standardanmeldedaten für Anwendungen fest. Wenn keine Anmeldedaten verfügbar sind oder Sie das Standardprojekt überschreiben möchten, haben Sie zwei Möglichkeiten:

  • Legen Sie project in der Exporter-Konfiguration fest.
  • Fügen Sie Ihren Messwerten das Ressourcenattribut gcp.project.id hinzu.

Es wird dringend empfohlen, den Standardwert (nicht festgelegt) für project_id zu verwenden, anstatt ihn explizit festzulegen, wenn möglich

Legen Sie project in der Exporter-Konfiguration fest.

Der folgende Konfigurationsauszug sendet Messwerte an Managed Service for Prometheus im Google Cloud-Projekt MY_PROJECT:

receivers:
  prometheus:
    config:
    ...

processors:
  resourcedetection:
    detectors: [gcp]
    timeout: 10s

exporters:
  googlemanagedprometheus:
    project: MY_PROJECT

service:
  pipelines:
    metrics:
      receivers: [prometheus]
      processors: [resourcedetection]
      exporters: [googlemanagedprometheus]

Die einzige Änderung gegenüber den vorherigen Beispielen ist die neue Zeile project: MY_PROJECT. Diese Einstellung ist hilfreich, wenn Sie wissen, dass jeder über diesen Collector kommende Messwert an MY_PROJECT gesendet werden soll.

Ressourcenattribut gcp.project.id festlegen

Sie können Projektverknüpfungen auf Messwertbasis festlegen, indem Sie Ihren Messwerten ein gcp.project.id-Ressourcenattribut hinzufügen. Legen Sie den Wert des Attributs auf den Namen des Projekts fest, mit dem der Messwert verknüpft werden soll.

Wenn Ihr Messwert beispielsweise bereits das Label project hat, kann dieses Label in ein Ressourcenattribut verschoben und mithilfe von Prozessoren in der Collector-Konfiguration in gcp.project.id umbenannt werden, wie im folgenden Beispiel gezeigt:

receivers:
  prometheus:
    config:
    ...

processors:
  resourcedetection:
    detectors: [gcp]
    timeout: 10s

  groupbyattrs:
    keys:
    - project

  resource:
    attributes:
    - key: "gcp.project.id"
      from_attribute: "project"
      action: upsert

exporters:
  googlemanagedprometheus:

service:
  pipelines:
    metrics:
      receivers: [prometheus]
      processors: [resourcedetection, groupbyattrs, resource]
      exporters: [googlemanagedprometheus]

Clientoptionen festlegen

Der Exporter googlemanagedprometheus verwendet gRPC-Clients für Managed Service for Prometheus. Daher sind für die Konfiguration des gRPC-Clients optionale Einstellungen verfügbar:

  • compression: Aktiviert die GZIP-Komprimierung für gRPC-Anfragen, die zum Minimieren von Datenübertragungsgebühren beim Senden von Daten aus anderen Clouds an Managed Service for Prometheus (gültige Werte: gzip) nützlich ist.
  • user_agent: Überschreibt den String des User-Agents, der bei Anfragen an Cloud Monitoring gesendet wird; gilt nur für Messwerte. Die Standardeinstellung ist die Build- und Versionsnummer Ihres OpenTelemetry Collectors, z. B. opentelemetry-collector-contrib 0.92.0.
  • endpoint: Legt den Endpunkt fest, an den Messwertdaten gesendet werden.
  • use_insecure: Wenn „true“, wird gRPC als Kommunikationstransport verwendet. Hat nur Auswirkungen, wenn der Wert von endpoint nicht "" ist.
  • grpc_pool_size: Legt die Größe des Verbindungspools im gRPC-Client fest.
  • prefix: Konfiguriert das Präfix von Messwerten, die an den Managed Service für Prometheus gesendet werden. Die Standardeinstellung ist prometheus.googleapis.com. Ändern Sie dieses Präfix nicht. Sonst können Messwerte mit PromQL in der Cloud Monitoring-UI nicht abgefragt werden.

In den meisten Fällen müssen Sie diese Werte nicht von den Standardwerten abweichend ändern. Sie können sie jedoch im Falle von spezieller Umstände ändern.

Alle diese Einstellungen werden unter einem metric-Block im Abschnitt googlemanagedprometheus-Exporter festgelegt, wie im folgenden Beispiel gezeigt:

receivers:
  prometheus:
    config:
    ...

processors:
  resourcedetection:
    detectors: [gcp]
    timeout: 10s

exporters:
  googlemanagedprometheus:
    metric:
      compression: gzip
      user_agent: opentelemetry-collector-contrib 0.92.0
      endpoint: ""
      use_insecure: false
      grpc_pool_size: 1
      prefix: prometheus.googleapis.com

service:
  pipelines:
    metrics:
      receivers: [prometheus]
      processors: [resourcedetection]
      exporters: [googlemanagedprometheus]

Wie geht es weiter?