Auf dieser Seite wird erläutert, wie Sie vordefinierte Berichte in BigQuery einrichten und aufrufen. Diese Berichte werden mit Logs aus Cloud Logging erstellt. Um Berichte einzurichten, müssen Sie einmalig einen Log-Sink erstellen, um Protokolldaten in BigQuery zu streamen, und dann das vordefinierte Script ausführen.
Erforderliche IAM-Rolle
Die folgenden IAM-Berechtigungen sind erforderlich, um vordefinierte Berichte in BigQuery aufzurufen. Informationen zum Gewähren einer IAM-Rolle
Rolle | Wann die Rolle gewährt werden sollte |
---|---|
„Logs Configuration Writer“ (roles/logging.configWriter ) oder „Logging Admin“ ( roles/logging.admin ) und „BigQuery Data Editor“ ( roles/bigquery.dataEditor ) |
Sie können einen Datenablauf und ein BigQuery-Dataset in der Google Cloud Console erstellen. |
Inhaber (roles/owner ) |
Sie können einen Abfluss und ein BigQuery-Dataset über die Google Cloud CLI erstellen. |
BigQuery Administrator (bigquery.admin ) |
Benutzerdefinierte Abfragen schreiben oder Abfragen herunterladen |
Senken erstellen und Logs an BigQuery weiterleiten
In BigQuery werden nur die Protokolle gespeichert, die nach dem Erstellen einer Logsenke generiert werden. Protokolle, die vor dem Erstellen einer Protokollsenke generiert werden, sind in BigQuery nicht sichtbar. Sie können den Log-Sink über die Google Cloud -Console oder die Google Cloud CLI erstellen.
So erstellen Sie Sink- und Routing-Logs in BigQuery:
Console
- Rufen Sie in der Google Cloud -Console die Seite Log Router auf:
- Wählen Sie ein vorhandenes Google Cloud -Projekt aus.
- Klicken Sie auf Senke erstellen.
- Geben Sie im Bereich Senkendetails die folgenden Felder ein:
- Name der Senke: Geben Sie als Namen der Senke
BackupandDR_reports_sink
ein. Sie müssen den Namen des SinksBackupandDR_reports_sink
für die Identifizierung von Sicherungs- und Notfallwiederherstellungsberichten aus anderen Sinks verwenden. - Senkenbeschreibung: Beschreiben Sie den Zweck oder den Anwendungsfall für die Senke.
- Name der Senke: Geben Sie als Namen der Senke
Führen Sie im Bereich Senkenziel die folgenden Schritte aus:
- Wählen Sie im Menü Senkendienst auswählen den Senkendienst BigQuery-Dataset aus.
- Wählen Sie unter BigQuery-Dataset auswählen die Option Neues BigQuery-Dataset erstellen aus.
- Führen Sie auf der Seite Dataset erstellen die folgenden Schritte aus:
- Geben Sie als Dataset-ID den Namen des Datasets als
BackupandDR_reports
ein, um es von anderen Datasets zu unterscheiden. Ändern Sie den Dataset-Namen nicht vonBackupandDR_reports
. - Wählen Sie unter Standorttyp einen geografischen Standort für das Dataset aus. Nachdem ein Dataset erstellt wurde, kann der Standort nicht mehr geändert werden.
- Optional: Wenn Sie möchten, dass die Tabellen in diesem Dataset ablaufen, wählen Sie Tabellenablauf aktivieren und geben Sie dann das standardmäßige Höchstalter für Tabellen in Tagen an.
- Klicken Sie auf Dataset erstellen.
- Geben Sie als Dataset-ID den Namen des Datasets als
Führen Sie im Bereich Logs auswählen, die in der Senke enthalten sein sollen die folgenden Schritte aus:
Geben Sie im Feld Einschlussfilter erstellen den folgenden Filterausdruck ein, der den Logeinträgen entspricht, die Sie aufnehmen möchten.
logName=~"projects/PROJECT_ID/logs/backupdr.googleapis.com%2Fgcb_*"
Wählen Sie Vorschau von Logs aus, um zu prüfen, ob Sie den richtigen Filter eingegeben haben. Dadurch wird der Log-Explorer in einem neuen Tab geöffnet, auf dem der Filter bereits ausgefüllt ist.
Optional: Gehen Sie im Bereich Logs auswählen, die aus der Senke herausgefiltert werden sollen so vor:
- Geben Sie in das Feld Name des Ausschlussfilters einen Namen ein.
Geben Sie im Feld Ausschlussfilter erstellen einen Filterausdruck ein, der den Logeinträgen entspricht, die Sie ausschließen möchten. Mit der Funktion „sample“ können Sie auch einen Teil der Logeinträge auswählen, die ausgeschlossen werden sollen.
Wählen Sie Senke erstellen aus.
Sie können das Dataset in BigQuery Studio aufrufen.
gcloud
- Klicken Sie auf Cloud Shell aktivieren und dann auf Editor öffnen.
- Klicken Sie auf das Symbol , wählen Sie Datei und dann Neue Textdatei aus.
Kopieren Sie das folgende Script und fügen Sie es ein.
#!/bin/bash echo "This script will set up a log sink for BackupDR reports to be available in BigQuery" # Get the default project ID DEFAULT_PROJECT_ID=$(gcloud config get-value project) read -p "Enter Project ID (default: $DEFAULT_PROJECT_ID, press Enter to continue):" PROJECT_ID # Use default if no input is provided if [ -z "$PROJECT_ID" ]; then PROJECT_ID=$DEFAULT_PROJECT_ID fi # Set the project ID result=$(gcloud config set project $PROJECT_ID) if [ $? -ne 0 ]; then echo "Error setting the project to $PROJECT_ID" exit 1 fi # --- Check if BigQuery API is already enabled, enable if not --- echo "Checking if BigQuery API is enabled..." if gcloud services list | grep "bigquery.googleapis.com" >/dev/null; then echo "BigQuery API is already enabled for $PROJECT_ID" else echo "For logs to be available in BigQuery, we need to enable BigQuery service in the project if not done already. This might mean additional costs incurred. Please check the pricing at https://cloud.google.com/backup-disaster-recovery/docs/monitor-reports/reports-overview#pricing before proceeding." read -p "Do you want to continue(Y/N)?" continue if [ "$continue" = "y" ] || [ "$continue" = "Y" ]; then echo "Enabling BigQuery API..." result=$(gcloud services enable bigquery.googleapis.com --project $PROJECT_ID) if [ $? -eq 0 ]; then echo "Successfully enabled BigQuery api for $PROJECT_ID" else echo "Error in setting up the BigQuery api for the project. $result" exit 1 fi else exit 0 fi fi # --- Check if BigQuery data set already exists, create if not --- echo "Checking if BigQuery data set exists..." if bq ls | grep "BackupandDR_reports" >/dev/null; then echo "Dataset BackupandDR_reports already exists for $PROJECT_ID" else echo "Creating bigQuery dataset BackupandDR_reports..." # --- Get dataset location from user (default: US) --- read -p "Enter dataset location (default: US, press Enter to use): " DATASET_LOCATION if [ -z "$DATASET_LOCATION" ]; then DATASET_LOCATION="US" fi # --- Get table expiration in days from user (default: no expiration) --- read -p "Enter default table expiration in days (default: no expiration, press Enter to skip): " TABLE_EXPIRATION_DAYS # Calculate table expiration in seconds if provided if [ -n "$TABLE_EXPIRATION_DAYS" ]; then TABLE_EXPIRATION_SECONDS=$((TABLE_EXPIRATION_DAYS * 24 * 60 * 60)) EXPIRATION_FLAG="--default_table_expiration $TABLE_EXPIRATION_SECONDS" else EXPIRATION_FLAG="" fi result=$(bq --location=$DATASET_LOCATION mk $EXPIRATION_FLAG BackupandDR_reports) if [ $? -eq 0 ]; then echo "Created a BigQuery dataset BackupandDR_reports successfully." else echo "" echo "ERROR : Failed to create the BigQuery dataset." echo $result exit 1 fi fi # --- Check if Log Sink already exists, create if not --- echo "Checking if Log Sink exists..." if gcloud logging sinks list | grep "BackupandDR_reports_sink" >/dev/null; then echo "Log Sink BackupandDR_reports_sink already exists for $PROJECT_ID" else log_filter="projects/$PROJECT_ID/logs/backupdr.googleapis.com%2Fgcb_*" echo "Creating log sink BackupandDR_reports_sink..." result=$(gcloud logging sinks create BackupandDR_reports_sink bigquery.googleapis.com/projects/$PROJECT_ID/datasets/BackupandDR_reports --log-filter="logName=~\"$log_filter\"") if [ $? -eq 0 ]; then echo "Created a logsink BackupandDR_reports_sink successfully." else echo "" echo "ERROR : Failed to create logsink." exit 1 fi fi # --- Add IAM Policy binding for Cloud logging service account to write logs to BigQuery --- result=$(gcloud projects add-iam-policy-binding $(gcloud projects describe $PROJECT_ID --format="value(projectNumber)") --member=serviceAccount:service-$(gcloud projects describe $PROJECT_ID --format="value(projectNumber)")@gcp-sa-logging.iam.gserviceaccount.com --role=roles/bigquery.dataEditor --condition=None) if [ $? -eq 0 ]; then echo "Added permission for cloud logging to write to BigQuery datasets" else echo "" echo "ERROR : Failed to add permissions for cloud logging to write to BigQuery datasets. Please make sure that you have correct access rights in order to be able to proceed." exit 1 fi echo "Setup complete. The logs for the project $PROJECT_ID will now start flowing to bigquery." exit 0
Speichern Sie die Datei mit einem Namen mit der Bash-Dateiendung (
.sh
), z. B.script.sh
.Führen Sie den Befehl „bash“ mit der Datei aus, die Sie gerade erstellt haben. Beispiel:
bash script.sh
.Sie können das erstellte Dataset in BigQuery Studio aufrufen.
Vordefinierte Berichte einrichten
Sie können vordefinierte Berichte einrichten, indem Sie das folgende Script im Dataset ausführen, in dem die Protokolle über die Log-Senke geleitet werden.
Das Script fügt die folgenden vordefinierten Berichte hinzu:
- Berichte zu Sicherungs- und Wiederherstellungsjobs
- Tägliche Berichte zur Einhaltung des Zeitplans
- Berichte zu geschützten Ressourcen
- Berichte zur Auslastung von Speicherressourcen
- Berichte zu bereitgestellten Images
- Berichte zu ungeschützten Ressourcen
- Berichte zur Connector-Version
So richten Sie vordefinierte Berichte in BigQuery ein:
gcloud
- Klicken Sie auf Cloud Shell aktivieren und dann auf Editor öffnen.
- Erstellen Sie eine neue Textdatei.
Kopieren Sie das folgende Script für vordefinierte Berichte und fügen Sie es in die Google Cloud CLI ein.
backup_job_summary_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_recovery_jobs_*` WHERE DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) >= DATE_SUB(CURRENT_DATE(), INTERVAL 29 DAY) AND DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) < CURRENT_DATE() + 1 GROUP BY insertId ) SELECT DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) as Date, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.job_type as Job_Type, COUNT(CASE WHEN jsonPayload.job_status = "succeeded" THEN 1 END)/COUNT(*) * 100 as Success_Percent, COUNT(*) as Total_Jobs, COUNT(CASE WHEN jsonPayload.job_status = "succeeded" THEN 1 END) as Succeeded, COUNT(CASE WHEN jsonPayload.job_status = "failed" THEN 1 END) as Failed, COUNT(CASE WHEN jsonPayload.job_status = "canceled" THEN 1 END) as Cancelled, COUNT(CASE WHEN jsonPayload.job_status = "notrun" THEN 1 END) as Not_Run, FROM filtered_data WHERE jsonPayload.job_category = "Backup Job" AND jsonPayload.job_status != "retry" GROUP BY Date, jsonPayload.job_type, jsonPayload.resource_id, jsonPayload.resource_name, jsonPayload.resource_type ORDER BY Date, Resource_Name;' recovery_job_summary_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_recovery_jobs_*` WHERE DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) >= DATE_SUB(CURRENT_DATE(), INTERVAL 29 DAY) AND DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) < CURRENT_DATE() + 1 GROUP BY insertId ) SELECT DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) as Date, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.job_type as Job_Type, COUNT(CASE WHEN jsonPayload.job_status = "succeeded" THEN 1 END)/COUNT(*) * 100 as Success_Percent, COUNT(*) as Total_Jobs, COUNT(CASE WHEN jsonPayload.job_status = "succeeded" THEN 1 END) as Succeeded, COUNT(CASE WHEN jsonPayload.job_status = "failed" THEN 1 END) as Failed, COUNT(CASE WHEN jsonPayload.job_status = "canceled" THEN 1 END) as Cancelled, COUNT(CASE WHEN jsonPayload.job_status = "notrun" THEN 1 END) as Not_Run, FROM filtered_data WHERE jsonPayload.job_category = "Recovery Job" AND jsonPayload.job_status != "retry" GROUP BY Date, jsonPayload.job_type, jsonPayload.resource_id, jsonPayload.resource_name, jsonPayload.resource_type ORDER BY Date, Resource_Name;' failed_job_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_recovery_jobs_*` GROUP BY insertId ) SELECT jsonPayload.job_name as Job_Name, jsonPayload.job_category as Job_Category, jsonPayload.job_type as Job_Type, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.error_code as Error_Code, jsonPayload.error_message as Error_Message, jsonPayload.hostname as Host_Name, jsonPayload.backup_rule_policy_name as Backup_Rule_Policy_Name, jsonPayload.backup_plan_policy_template as Backup_Plan_Policy_Template, jsonPayload.appliance_name as Appliance_Name, FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(jsonPayload.job_start_time)) as Job_Start_Time, DATE(jsonPayload.job_start_time) as Job_Date, jsonPayload.backup_type as Backup_Type FROM filtered_data WHERE jsonPayload.job_status = "failed" ORDER BY Job_Start_Time DESC, Resource_Name' job_details_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_recovery_jobs_*` GROUP BY insertId ) SELECT jsonPayload.job_name as Job_Name, jsonPayload.job_category as Job_Category, jsonPayload.job_type as Job_Type, jsonPayload.log_backup as Log_Backup, jsonPayload.job_status as Job_Status, DATE(CASE WHEN jsonPayload.job_start_time = "" THEN jsonPayload.job_queued_time ELSE jsonPayload.job_start_time END) as Job_Date, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.error_code as Error_Code, jsonPayload.error_message as Error_Message, jsonPayload.job_initiation_failure_reason as Job_Initiation_Failure_Reason, jsonPayload.appliance_name as Appliance_Name, jsonPayload.hostname as Host_Name, jsonPayload.target_appliance_name as Target_Appliance_Name, jsonPayload.target_pool_name as Target_Pool_Name, jsonPayload.target_host_name as Target_Host_Name, jsonPayload.backup_plan_policy_template as Backup_Plan_Policy_Template, jsonPayload.backup_rule_policy_name as Backup_Rule_Policy_Name, FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(CASE WHEN jsonPayload.job_queued_time !="" THEN jsonPayload.job_queued_time ELSE NULL END)) as Job_Queue_Time, FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(CASE WHEN jsonPayload.job_start_time!="" THEN jsonPayload.job_start_time ELSE NULL END)) as Job_Start_Time, FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(CASE WHEN jsonPayload.job_end_time!="" THEN jsonPayload.job_end_time ELSE NULL END)) as Job_End_Time, jsonPayload.job_duration_in_hours as Job_Duration_In_Hours, jsonPayload.backup_consistency as Backup_Consistency, jsonPayload.resource_data_size_in_gib as Resource_Data_Size_In_GiB, jsonPayload.snapshot_disk_size_in_gib as Snapshot_Disk_Size_in_GiB, jsonPayload.pre_compress_in_gib as Pre_Compress_In_GiB, jsonPayload.compression_ratio as Compression_Ratio, jsonPayload.data_sent_in_gib as Streamsnap_Data_Sent_In_GiB, jsonPayload.data_written_in_gib as Streamsnap_Data_Written_In_GiB, jsonPayload.data_copied_in_gib as Data_Copied_In_GiB, jsonPayload.data_change_rate as Data_Change_Rate_Percent, jsonPayload.backup_type as Backup_Type, FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(CASE WHEN jsonPayload.recovery_point!="" THEN jsonPayload.recovery_point ELSE NULL END)) as Recovery_Point, jsonPayload.onvault_pool_storage_consumed_in_gib as OnVault_Pool_Storage_Consumed_In_GiB, FROM filtered_data ORDER BY Job_Start_Time DESC, Resource_Name' unresolved_failures_query='WITH job_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_recovery_jobs_*` WHERE jsonPayload.job_status in ("succeeded", "failed") GROUP BY insertId ), -- Select resources which have their latest status as failed unresolved_failed_resources AS ( SELECT jsonPayload.appliance_name as Appliance_Name, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.job_type as Job_Type, jsonPayload.job_status as Job_Status, jsonPayload.job_start_time as Job_Start_Time, jsonPayload.hostname as Hostname, jsonPayload.error_code as Error_Code, jsonPayload.error_message as Error_Message FROM job_data j1 WHERE jsonPayload.job_start_time = (SELECT MAX(jsonPayload.job_start_time) FROM job_data j2 WHERE j1.jsonPayload.appliance_name = j2.jsonPayload.appliance_name AND j1.jsonPayload.resource_name = j2.jsonPayload.resource_name AND j1.jsonPayload.resource_type = j2.jsonPayload.resource_type AND j1.jsonPayload.job_type = j2.jsonPayload.job_type) AND jsonPayload.job_status = "failed" ), -- Select all jobs for all the resources that have unresolved failures all_jobs_of_unresolved_failure_resources AS ( SELECT jsonPayload.appliance_name as Appliance_Name, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.job_type as Job_Type, jsonPayload.job_category as Job_Category, jsonPayload.job_name as Job_Name, jsonPayload.recovery_point as Recovery_Point, jsonPayload.job_status as Job_Status, jsonPayload.job_start_time as Job_Start_Time, jsonPayload.hostname as Hostname, jsonPayload.error_code as Error_Code FROM job_data j1 JOIN unresolved_failed_resources fr ON j1.jsonPayload.appliance_name = fr.Appliance_Name AND j1.jsonPayload.resource_name = fr.Resource_Name AND j1.jsonPayload.resource_type = fr.Resource_Type AND j1.jsonPayload.job_type = fr.Job_Type ), -- Select the latest successful jobs for the resources with unresolved failures latest_success AS ( SELECT * FROM all_jobs_of_unresolved_failure_resources all_jobs WHERE all_jobs.Job_Status = "succeeded" AND all_jobs.Job_Start_Time = ( SELECT MAX(Job_Start_Time) FROM all_jobs_of_unresolved_failure_resources all_jobs_2 WHERE all_jobs_2.Appliance_Name = all_jobs.Appliance_Name AND all_jobs_2.Resource_Name = all_jobs.Resource_Name AND all_jobs_2.Resource_Type = all_jobs.Resource_Type AND all_jobs_2.Job_Type = all_jobs.Job_Type AND all_jobs_2.job_status = "succeeded" ) ), -- Select all failed jobs after the last success for the resources with unresolved failures failed_jobs_to_report AS ( SELECT all_jobs.Appliance_Name as Appliance_Name, all_jobs.Resource_Name as Resource_Name, all_jobs.Resource_Type as Resource_Type, all_jobs.Job_Type as Job_Type, all_jobs.Job_Name as Job_Name, all_jobs.Recovery_Point as Recovery_Point, all_jobs.Job_Status as Job_Status, all_jobs.Job_Start_Time as Job_Start_Time, all_jobs.Hostname as Hostname, all_jobs.Error_Code as Error_Code, all_jobs.Job_Category as Job_Category, FROM all_jobs_of_unresolved_failure_resources all_jobs LEFT JOIN latest_success success ON success.Appliance_Name = all_jobs.Appliance_Name AND success.Resource_Name = all_jobs.Resource_Name AND success.Resource_Type = all_jobs.Resource_Type AND success.Job_Type = all_jobs.Job_Type WHERE all_jobs.Job_Status = "failed" AND TIMESTAMP(all_jobs.Job_Start_Time) > COALESCE(TIMESTAMP(success.Job_Start_Time), TIMESTAMP(DATE_SUB(CURRENT_DATE(), INTERVAL 3 DAY))) ) SELECT failed_jobs.Resource_Name, failed_jobs.Resource_Type, failed_jobs.Job_Type, failed_jobs.Job_Category, COUNT(*) as Error_Count, failed_jobs.Error_Code, ANY_VALUE(ufr.Error_Message) as Error_Message, FORMAT_TIMESTAMP("%F %R %Z", MIN(TIMESTAMP(failed_jobs.Job_Start_Time))) as First_Failure, FORMAT_TIMESTAMP("%F %R %Z", MAX(TIMESTAMP(failed_jobs.Job_Start_Time))) as Last_Failure, TIMESTAMP_DIFF(CURRENT_TIMESTAMP,TIMESTAMP(MAX(failed_jobs.Job_Start_Time)), HOUR) as Hours_Since_Last_Failure, failed_jobs.Appliance_Name FROM failed_jobs_to_report failed_jobs LEFT JOIN unresolved_failed_resources ufr ON failed_jobs.Appliance_Name = ufr.Appliance_Name AND failed_jobs.Resource_Name = ufr.Resource_Name AND failed_jobs.Resource_Type = ufr.Resource_Type AND failed_jobs.Job_Type = ufr.Job_Type AND failed_jobs.Error_Code = ufr.Error_Code GROUP BY Appliance_Name, Resource_Name, Resource_Type, Job_Type, Job_Category, Error_Code ORDER BY Last_Failure DESC ' daily_schedule_compliance_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_daily_schedule_compliance_*` WHERE DATE(jsonPayload.date) >= DATE_SUB(CURRENT_DATE(), INTERVAL 8 DAY) AND DATE(jsonPayload.date) < CURRENT_DATE() + 1 GROUP BY insertId ) SELECT jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.backup_rule_policy_name as Backup_Rule_Policy_Name, jsonPayload.backup_plan_policy_template as Backup_Plan_Policy_Template, DATE(jsonPayload.date) as Date, jsonPayload.backup_window_start_time as Backup_Window_Start_Time, jsonPayload.job_type as Job_Type, jsonPayload.status as Status, jsonPayload.comment as Comment, jsonPayload.appliance_name as Appliance_Name, jsonPayload.host_name as Host_Name FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Resource_Name, Date; ' protected_data_resource_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_protected_resource_*` GROUP BY insertId ) SELECT FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(Report_Timestamp)) as Last_updated_on, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.host_name as Host_Name, jsonPayload.backup_plan_policy_template as Backup_Plan_Policy_Template, jsonPayload.protected_on as Protected_On, jsonPayload.recovery_point as Recovery_Point, jsonPayload.protected_data_in_gib as Protected_Data_in_Gib, jsonPayload.onvault_in_gib as OnVault_Data_in_Gib, jsonPayload.backup_plan_restrictions as Backup_Plan_Restrictions, jsonPayload.backup_inclusion_or_exclusion as Backup_Inclusion_or_Exclusion, jsonPayload.policy_overrides as Policy_Overrides, jsonPayload.appliance_name as Appliance_Name, jsonPayload.remote_appliance as Remote_Appliance, jsonPayload.source_appliance as Source_Appliance, FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Resource_Name;' storage_utilization_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_backup_storage_utilization_*` GROUP BY insertId ) SELECT FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(Report_Timestamp)) as Last_updated_on, jsonPayload.appliance_name as Appliance_Name, jsonPayload.pool_name as Pool_Name, jsonPayload.storage_type as Storage_Type, jsonPayload.total_capacity_in_gib as Total_Capacity_In_GiB, jsonPayload.used_capacity_in_gib as Used_Capacity_In_GiB, jsonPayload.utilization_percentage as Utilization_percentage, jsonPayload.appliance_id as Appliance_id, FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Appliance_Name;' mounted_image_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_mounted_images_*` GROUP BY insertId ) SELECT FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(Report_Timestamp)) as Last_updated_on, jsonPayload.source_resource_name as Source_Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.appliance_name as Appliance_Name, jsonPayload.mounted_image_name as Mounted_Image_Name, jsonPayload.source_image_name as Source_Image_Name, jsonPayload.source_image_type as Source_Image_Type, jsonPayload.recovery_point_date as Recovery_Point_Date, jsonPayload.last_mount_date as Last_Mount_Date, jsonPayload.source_host_name as Source_Host_Name, jsonPayload.mounted_host_name as Mounted_Host_Name, jsonPayload.mounted_resource_name as Mounted_Resource_Name, jsonPayload.resource_virtual_size_in_gib as Resource_Virtual_Size_In_Gib, jsonPayload.storage_consumed_in_gib as Storage_Consumed_In_Gib, jsonPayload.mounted_resource_label as Mounted_Resource_Label, jsonPayload.restorable_object as Restorable_Object, jsonPayload.mounted_image_age_in_days as Mounted_Image_Age_In_Days, jsonPayload.user_name as User_Name, jsonPayload.read_mode as Read_Mode, jsonPayload.resource_size_in_gib as Resource_Size_In_Gib, jsonPayload.source_image_expiration_date as Source_Image_Expiration_Date, FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Mounted_Resource_Name;' unprotected_resource_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_unprotected_resource_*` GROUP BY insertId ) SELECT FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(Report_Timestamp)) as Last_updated_on, jsonPayload.resource_name as Resource_Name, jsonPayload.resource_type as Resource_Type, jsonPayload.host_name as Host_Name, jsonPayload.instance_name as Instance_Name, jsonPayload.discovered_on as Discovered_On, jsonPayload.discovered_by as Discovery_Appliance, FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Resource_Name;' connector_version_query='WITH filtered_data AS ( SELECT insertId, ANY_VALUE(jsonPayload) as jsonPayload, ANY_VALUE(timestamp) as Report_Timestamp FROM `PROJECT_ID.DATASET_NAME.backupdr_googleapis_com_gcb_connector_version_*` GROUP BY insertId ) SELECT FORMAT_TIMESTAMP("%F %R %Z", TIMESTAMP(Report_Timestamp)) as Last_updated_on, jsonPayload.appliance_name as Appliance_Name, jsonPayload.host_name as Host_Name, jsonPayload.host_os_type as Host_OS_Type, jsonPayload.host_ip_address as Host_IP_Address, jsonPayload.db_authentication as DB_Authentication, jsonPayload.installed_version as Installed_Version, jsonPayload.available_version as Available_Version, jsonPayload.version_check as Version_Check, jsonPayload.disk_preference as Disk_Preference, jsonPayload.transport as Transport, FROM filtered_data f1 WHERE Report_Timestamp = (SELECT MAX(Report_Timestamp) FROM filtered_data f2 WHERE f2.jsonPayload.appliance_id = f1.jsonPayload.appliance_id) ORDER BY Host_Name;' table_not_exists_error_flag=false check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_backup_recovery_jobs%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$backup_job_summary_query" DATASET_NAME.'Backup Jobs Summary') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$backup_job_summary_query" DATASET_NAME.'Backup Jobs Summary' else echo $result fi result=$(bq update --use_legacy_sql=false --expiration 0 --view "$recovery_job_summary_query" DATASET_NAME.'Recovery Jobs Summary') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$recovery_job_summary_query" DATASET_NAME.'Recovery Jobs Summary' else echo $result fi result=$(bq update --use_legacy_sql=false --expiration 0 --view "$failed_job_query" DATASET_NAME.'Failed Jobs') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$failed_job_query" DATASET_NAME.'Failed Jobs' else echo $result fi result=$(bq update --use_legacy_sql=false --expiration 0 --view "$job_details_query" DATASET_NAME.'Job Details') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$job_details_query" DATASET_NAME.'Job Details' else echo $result fi result=$(bq update --use_legacy_sql=false --expiration 0 --view "$unresolved_failures_query" DATASET_NAME.'Unresolved Failures') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$unresolved_failures_query" DATASET_NAME.'Unresolved Failures' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_backup_recovery_jobs does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_daily_schedule_compliance%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$daily_schedule_compliance_query" DATASET_NAME.'Daily Schedule Compliance') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$daily_schedule_compliance_query" DATASET_NAME.'Daily Schedule Compliance' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_daily_schedule_compliance does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_protected_resource%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$protected_data_resource_query" DATASET_NAME.'Protected Data Resource') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$protected_data_resource_query" DATASET_NAME.'Protected Data Resource' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_protected_resource does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_backup_storage_utilization%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$storage_utilization_query" DATASET_NAME.'Storage Resource Utilization') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$storage_utilization_query" DATASET_NAME.'Storage Resource Utilization' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_backup_storage_utilization does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_unprotected_resource%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$unprotected_resource_query" DATASET_NAME.'Unprotected Resource') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$unprotected_resource_query" DATASET_NAME.'Unprotected Resource' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_unprotected_resource does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_mounted_images%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$mounted_image_query" DATASET_NAME.'Mounted Image Details') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$mounted_image_query" DATASET_NAME.'Mounted Image Details' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_mounted_images does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi check_table=$(bq query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.TABLES WHERE table_name like '%backupdr_googleapis_com_gcb_connector_version%'" | tail -n +2 | tr -d ' ') if [ $check_table == 'true' ]; then result=$(bq update --use_legacy_sql=false --expiration 0 --view "$connector_version_query" DATASET_NAME.'Connector Version Details') if [ $? -ne 0 ]; then bq mk --use_legacy_sql=false --expiration 0 --view "$connector_version_query" DATASET_NAME.'Connector Version Details' else echo $result fi else echo "The table backupdr_googleapis_com_gcb_connector_version does not exist in the dataset DATASET_NAME." table_not_exists_error_flag=true fi if [ $table_not_exists_error_flag == true ]; then echo -e "\e[1m\e[33mAll the prebuilt reports could not be created successfully in BigQuery as one or more report logs are missing in the dataset DATASET_NAME." echo -e "Please ensure that you have waited for at least 8 hours after creating the sink, before running the script to create pre built reports. Try re-running the script again after some time to fix the issue." echo -e "Reach out to Google Cloud Support in case you are still facing this issue.\e[0m" fi # Check if view exists check_view=$(bq --project_id PROJECT_ID query --format=csv --use_legacy_sql=false "Select COUNT(*)>0 from DATASET_NAME.INFORMATION_SCHEMA.VIEWS WHERE table_name='Storage Resource Utilization'" | tail -n +2 | tr -d ' ') if [ "$check_view" == 'true' ]; then # Check if view is working correctly fetch_result=$(bq query --format=csv --use_legacy_sql=false "SELECT COUNT(*) FROM \`DATASET_NAME.Storage Resource Utilization\`" 2>&1) if [[ $? -eq 0 ]]; then echo -e "\e[1m\e[33mTo fix a schema related error in the Backup Storage Utilization view, we updated the software on June 3rd, 2024. As part of the fix, storage utilization data before June 3rd 2024, will be no longer available in the report.\e[0m" echo -e "Deleting the data before June 3rd 2024..." start_date="20240301" end_date="20240603" current_date="$start_date" while [ "$current_date" -le "$end_date" ]; do table_name="DATASET_NAME.backupdr_googleapis_com_gcb_backup_storage_utilization_${current_date}" bq rm -f -t "$table_name" current_date=$(date -d "$(date -d "$current_date" +%Y-%m-%d) + 1 day" +%Y%m%d) done echo -e "Completed successfully." fi fi
Ersetzen Sie Folgendes:
PROJECT_ID
: Name Ihres ProjektsDATASET_NAME
: der Name Ihres BigQuery-Datasets. Wir empfehlen, den Namen des BigQuery-Datasets für Berichte zum Sicherungs- und Notfallwiederherstellungsdienst auf den Standardnamen des Datasets festzulegen, alsoBackupandDR_reports
. Wenn Sie beim Erstellen des Sinks einen anderen Namen als den Standardnamen des Datasets festgelegt haben, ändern Sie den Dataset-Namen so, dass er mit Ihrem BigQuery-Dataset übereinstimmt.
Speichern Sie die Datei mit einem Namen mit der Bash-Dateiendung (
.sh
), z. B.backupdrreports.sh
.Führen Sie den Befehl „bash“ mit der Datei aus, die Sie gerade erstellt haben. Beispiel:
bash backupdrreports.sh
.Sie finden die vordefinierten Berichte in BigQuery Studio unter dem Datenpool.
Wenn Sie vordefinierte Berichte eingerichtet haben und Zugriff auf Google Workspace haben, können Sie sich die Ergebnisse in verknüpften Google-Tabellen ansehen. Wenn Sie keinen Zugriff auf Google Workspace haben, können Sie sich die Berichte in Looker Studio ansehen oder vordefinierte Berichte als CSV-Datei herunterladen.
Preise
Für die Anzeige vordefinierter Berichte in BigQuery können Gebühren anfallen. Diese Kosten basieren auf der Menge der Berichtsdaten, die in BigQuery gestreamt, gespeichert und abgefragt werden. Weitere Informationen finden Sie unter Preise.
Nächste Schritte
- Benutzerdefinierte Abfragen in BigQuery schreiben
- Weitere Informationen zum Ansehen vordefinierter Berichte in verbundenen Google-Tabellenblättern
- Weitere Informationen zum Aufrufen vordefinierter Berichte in Looker