检索时间序列数据

本文档介绍了如何使用 Monitoring API 中的 timeSeries.list 方法来读取指标数据,也称为时间序列数据。 您可以通过以下几种方式调用 timeSeries.list 方法:

  • 您可以通过此页面上的协议标签页来使用基于表单的 APIs Explorer
  • 您可以使用特定于语言的客户端库。
  • 您可以使用 Metrics Explorer。

读取指标数据的另一种方法是向 timeSeries.query 方法, 该 API 需要使用 Monitoring Query Language (MQL)。本文档未对以下内容进行描述 MQL 或 timeSeries.query 方法。有关 主题,请参阅 使用 timeSeries.query 检索数据

概览

每次调用 timeSeries.list 方法都会从单一指标类型返回任意数量的时间序列。例如,如果您使用 Compute Engine,那么对于每个虚拟机实例,compute.googleapis.com/instance/cpu/usage_time 指标类型都有单独的时间序列。有关指标和时序的简介 请参阅指标、时序和资源

您可以通过提供以下内容来指定所需的时间序列数据 传递给 timeSeries.list 方法:

  • 指定指标类型的过滤条件表达式。或者,过滤器通过指定生成时间序列的资源或指定时间序列中特定标签的值,选择指标的部分时间序列。
  • 限制返回多少数据的时间间隔。
  • (可选)关于如何合并多个时间序列以生成数据聚合摘要的规范。如需更多信息和 示例,请参阅汇总数据

时间序列过滤条件

通过将时序过滤条件传递给 timeSeries.list 方法,可指定要检索的时序。下面列出了常见的过滤条件组成部分:

  • 过滤条件必须指定单个指标类型。例如:

    metric.type = "compute.googleapis.com/instance/cpu/usage_time"
    

    如需检索用户定义的指标,请将过滤条件中的 metric.type 前缀更改为 custom.googleapis.com 或另一个可能使用的前缀(常用的是 external.googleapis.com)。

  • 过滤条件可为指标的维度标签指定值。指标类型决定了存在哪些标签。例如:

    (metric.label.instance_name = "your-instance-id" OR
    metric.label.instance_name = "your-other-instance-id")
    

    在上面的表达式中,即使实际指标对象使用 labels 作为其键,label 也是正确的。

  • 过滤条件只能选择那些包含特定受监控资源类型的时间序列:

    resource.type = "gce_instance"
    

过滤条件组成成分可合并到单个时间序列过滤条件中,如下所示:

metric.type = "compute.googleapis.com/instance/cpu/usage_time" AND
(metric.label.instance_name = "your-instance-id" OR
metric.label.instance_name = "your-other-instance-id")

如果您没有为所有指标标签都指定值,则 list 方法会为未指定标签中的每个值组合返回一个时间序列。该方法仅返回包含数据的时间序列。

时间间隔

使用 API 读取数据时,请通过设置开始时间和结束时间来指定要检索数据的时间间隔。API 根据间隔 (start, end](即从开始时间到结束时间)检索数据。

开始时间不得晚于结束时间。如果您指定的开始时间晚于结束时间,则 API 会返回错误。

如果您只想检索具有特定时间戳的数据,请将开始时间设置为与结束时间相同,或者不设置开始时间。

时间格式

开始时间和结束时间必须指定为 RFC 3339 格式的字符串。 例如:

2024-03-01T12:34:56+04:00
2024-03-01T12:34:56.992Z

Linux 上的 date -Iseconds 命令对生成时间戳很有用。

基本列表操作

timeSeries.list 方法可用于返回简单的原始数据,也可用于返回已经过复杂处理的数据。本部分说明了 如何列出可用的时序以及如何获取值 特定时序。

示例:列出可用的时间序列

此示例显示如何仅列出与过滤条件匹配的时间序列的名称和说明,而不是返回所有可用数据:

协议

  1. 打开 timeSeries.list 参考页面。

  2. 在标记为试用此方法的窗格中,输入以下内容:

    • name:输入项目的路径。

      projects/PROJECT_ID
      
    • filter:指定指标类型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:输入结束时间。
    • interval.startTime:输入开始时间,并确保其比结束时间早 20 分钟。
    • 点击显示标准参数,然后在字段中输入 以下:

      timeSeries.metric
      
  3. 点击执行

该示例输出显示了两个不同虚拟机实例的时间序列:

{
  "timeSeries": [
    {
      "metric": {
        "labels": {
          "instance_name": "your-first-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    },
    {
      "metric": {
        "labels": {
          "instance_name": "your-second-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    }
  ]
}

若要以 curl 命令的形式查看请求,请以 HTTP 请求,或在 JavaScript 中,点击 全屏

C#

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

public static object ReadTimeSeriesFields(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    Console.WriteLine($"metricType{ metricType}");
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Headers,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.Write("Found data points for the following instances:");
    foreach (var item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesFields reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesFields(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		View: monitoringpb.ListTimeSeriesRequest_HEADERS,
	}
	fmt.Fprintln(w, "Found data points for the following instances:")
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintf(w, "\t%v\n", resp.GetMetric().GetLabels()["instance_name"])
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setView(ListTimeSeriesRequest.TimeSeriesView.HEADERS);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);
  System.out.println("Got timeseries headers: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesFields() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Don't return time series data, instead just return information about
    // the metrics that match the filter
    view: 'HEADERS',
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  console.log('Found data points for the following instances:');
  timeSeries.forEach(data => {
    console.log(data.metric.labels.instance_name);
  });
}
readTimeSeriesFields();

PHP

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_fields($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_fields(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = TimeSeriesView::HEADERS;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('Found data points for the following instances:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
    }
}

Python

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"
now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 1200), "nanos": nanos},
    }
)
results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.HEADERS,
    }
)
for result in results:
    print(result)

Ruby

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::HEADERS

results = client.list_time_series name:     project_name,
                                  filter:   filter,
                                  interval: interval,
                                  view:     view
results.each do |result|
  p result
end

如果遇到困难,请参阅排查 Monitoring API 问题

示例:获取时间序列数据

此示例返回在 特定 Compute Engine 实例以 20 分钟为间隔。您获得的 返回的数据取决于指标的采样率。由于 CPU 利用率每分钟采样一次,因此此查询的结果大约包含 20 个数据点。如果有多个数据点 那么 API 会返回每个 按反向时间顺序排列的时序;此点排序没有替换项。

协议

协议示例进一步对输出进行限制,以使返回的数据在响应框中更易于管理:

  • filter 值会将时间序列限制为单个虚拟机实例。
  • fields 值仅指定测量结果的时间和值。

这些设置将限制结果中返回的时间序列数据量。

  1. 打开 timeSeries.list 参考页面。

  2. 在标有尝试此方法的窗格中,输入以下内容:

    • name:输入项目的路径。

      projects/PROJECT_ID
      
    • filter:指定指标类型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization" AND metric.label.instance_name = "INSTANCE_NAME"
      
    • interval.endTime:输入结束时间。

    • interval.startTime:输入开始时间,并确保其比结束时间早 20 分钟。

    • 点击显示标准参数,然后在字段中输入 以下:

      timeSeries.points.interval.endTime,timeSeries.points.value
      
  3. 点击执行

请求将返回如下结果:

{
 "timeSeries": [
  {
   "points": [
    {
     "interval": {
      "endTime": "2024-03-01T00:19:01Z"
     },
     "value": {
      "doubleValue": 0.06763074536575005
     }
    },
    {
     "interval": {
      "endTime": "2024-03-01T00:18:01Z"
     },
     "value": {
      "doubleValue": 0.06886174467702706
     }
    },
    ...
    {
     "interval": {
      "endTime": "2024-03-01T00:17:01Z"
     },
     "value": {
      "doubleValue": 0.06929610064253211
     }
    }
   ]
  }
 ]
}

如需采用 curl 命令、HTTP 请求或 JavaScript 格式查看请求,请在 API Explorer 中点击 全屏

C#

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

public static object ReadTimeSeriesData(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Full,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    foreach (TimeSeries item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// readTimeSeriesValue reads the TimeSeries for the value specified by metric type in a time window from the last 20 minutes.
func readTimeSeriesValue(projectID, metricType string) error {
	ctx := context.Background()
	c, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return err
	}
	defer c.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20).Unix()
	endTime := time.Now().UTC().Unix()

	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: fmt.Sprintf("metric.type=\"%s\"", metricType),
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{Seconds: startTime},
			EndTime:   &timestamp.Timestamp{Seconds: endTime},
		},
	}
	iter := c.ListTimeSeries(ctx, req)

	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value, %w ", err)
		}
		log.Printf("%+v\n", resp)
	}

	return nil
}

Java

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter(filter)
        .setInterval(interval);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesData() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';
  // const filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

  const request = {
    name: client.projectPath(projectId),
    filter: filter,
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  timeSeries.forEach(data => {
    console.log(`${data.metric.labels.instance_name}:`);
    data.points.forEach(point => {
      console.log(JSON.stringify(point.value));
    });
  });
}
readTimeSeriesData();

PHP

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_simple($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_simple(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    // Limit results to the last 20 minutes
    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        $instanceName = $timeSeries->getMetric()->getLabels()['instance_name'];
        printf($instanceName . ':' . PHP_EOL);
        foreach ($timeSeries->getPoints() as $point) {
            printf('  ' . $point->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 1200), "nanos": nanos},
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
    }
)
for result in results:
    print(result)

Ruby

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL

results = client.list_time_series name:     project_name,
                                  filter:   filter,
                                  interval: interval,
                                  view:     view
results.each do |result|
  p result
end

如果您遇到困难,请参阅 排查 Monitoring API 问题

聚合数据

timeSeries.list 方法可对返回的时间序列数据执行统计聚合和缩减。以下部分演示了两个示例。 如需了解详情,请参阅 过滤和聚合:处理时序

示例:校准时间序列

此示例将各个时间序列中的 20 个独立的利用率测量结果缩减为 2 个测量结果:20 分钟间隔中两个 10 分钟时间段的平均利用率。来自各个时间序列的数据首先校准到 10 分钟时间段,然后对每个 10 分钟时间段中的值进行均值计算。

对齐操作有两个优势:可以缩减数据,还可以将所有时间序列中的数据校准至准确的 10 分钟间隔。之后可以进一步处理校准后的数据。

协议

  1. 打开 timeSeries.list 参考页面。

  2. 在标记为试用此方法的窗格中,输入以下内容:

    • name:输入项目的路径。

      projects/PROJECT_ID
      
    • aggregation.alignmentPeriod:输入 600s
    • aggregation.perSeriesAligner:选择 ALIGN_MEAN
    • filter:指定指标类型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:输入结束时间。
    • interval.startTime:输入开始时间并确保它是 20 分钟 早于结束时间。
    • 点击显示标准参数,然后在字段中输入 以下:

      timeSeries.metric,timeSeries.points
      
  3. 点击执行

上一个示例中显示的针对单个实例的过滤条件将被删除:此查询返回的数据少得多,因此不需要将其限制为一个虚拟机实例。

以下示例结果为三个虚拟机实例中的每一个提供一个时间序列。每个时间序列具有两个数据点,即 10 分钟校准时间段的平均利用率:

{
 "timeSeries": [
  {
   "metric": {
    "labels": {"instance_name": "your-first-instance"},
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.06688481346044381 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": {"doubleValue": 0.06786652821310177 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-second-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.04144239874207415 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": { "doubleValue": 0.04045793689050091 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-third-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": { "doubleValue": 0.029650046587339607 }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": { "doubleValue": 0.03053874224715402 }
    }
   ]
  }
 ]
}

如需以 curl 命令的形式查看请求,请以 HTTP 请求,或在 JavaScript 中,点击 全屏

C#

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

public static object ReadTimeSeriesAggregate(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine($"{projectId} CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        var labels = item.Metric.Labels;
        Console.WriteLine($"{labels.Values.FirstOrDefault()}");
        if (points.Count > 0)
        {
            Console.WriteLine($"  Now: {points[0].Value.DoubleValue}");
        }
        if (points.Count > 1)
        {
            Console.WriteLine($"  10 min ago: {points[1].Value.DoubleValue}");
        }
    }
    return 0;
}

Go

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesAlign reads the last 20 minutes of the given metric and aligns
// everything on 10 minute intervals.
func readTimeSeriesAlign(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			PerSeriesAligner: monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintln(w, resp.GetMetric().GetLabels()["instance_name"])
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		if len(resp.GetPoints()) > 1 {
			fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
		}
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

Aggregation aggregation =
    Aggregation.newBuilder()
        .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
        .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesAggregate() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Aggregate results per matching instance
    aggregation: {
      alignmentPeriod: {
        seconds: 600,
      },
      perSeriesAligner: 'ALIGN_MEAN',
    },
  };

  // Writes time series data
  const [timeSeries] = await client.listTimeSeries(request);
  console.log('CPU utilization:');
  timeSeries.forEach(data => {
    console.log(data.metric.labels.instance_name);
    console.log(`  Now: ${data.points[0].value.doubleValue}`);
    if (data.points.length > 1) {
      console.log(`  10 min ago: ${data.points[1].value.doubleValue}`);
    }
    console.log('=====');
  });
}
readTimeSeriesAggregate();

PHP

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\Aggregation\Aligner;
use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_align($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_align(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setPerSeriesAligner(Aligner::ALIGN_MEAN);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view)
        ->setAggregation($aggregation);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
        printf('  Now: ');
        printf($timeSeries->getPoints()[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($timeSeries->getPoints()) > 1) {
            printf('  10 minutes ago: ');
            printf($timeSeries->getPoints()[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 3600), "nanos": nanos},
    }
)
aggregation = monitoring_v3.Aggregation(
    {
        "alignment_period": {"seconds": 1200},  # 20 minutes
        "per_series_aligner": monitoring_v3.Aggregation.Aligner.ALIGN_MEAN,
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
        "aggregation": aggregation,
    }
)
for result in results:
    print(result)

Ruby

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL
aggregation = Google::Cloud::Monitoring::V3::Aggregation.new(
  alignment_period:   { seconds: 1200 },
  per_series_aligner: Google::Cloud::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN
)

results = client.list_time_series name:        project_name,
                                  filter:      filter,
                                  interval:    interval,
                                  view:        view,
                                  aggregation: aggregation
results.each do |result|
  p result
end

如果您遇到困难,请参阅 排查 Monitoring API 问题

示例:跨多个时间序列进行缩减

此示例进一步扩展了上一示例,将三个虚拟机实例中的已校准时间序列合并为单个时间序列,以测量所有实例的平均利用率。

协议

  1. 打开 timeSeries.list 参考页面。

  2. 在标有尝试此方法的窗格中,输入以下内容:

    • name:输入项目的路径。

      projects/PROJECT_ID
      
    • aggregation.alignmentPeriod:输入 600s
    • aggregation.perSeriesAligner:选择 ALIGN_MEAN
    • aggregation.crossSeriesReducer:选择 REDUCE_MEAN
    • filter:指定指标类型。

      metric.type = "compute.googleapis.com/instance/cpu/utilization"
      
    • interval.endTime:输入结束时间。
    • interval.startTime:输入开始时间并确保它是 20 分钟 早于结束时间。
    • 点击显示标准参数,然后在字段中输入 以下:

      timeSeries.metric,timeSeries.points
      
  3. 点击执行

以下示例结果只有一个时间序列和两个数据点。每个数据点是相应时间段内三个虚拟机实例的平均利用率:

{
 "timeSeries": [
  {
   "metric": {
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2024-03-01T00:20:00.000Z",
      "endTime": "2024-03-01T00:20:00.000Z"
     },
     "value": {
      "doubleValue": 0.045992419596619184
     }
    },
    {
     "interval": {
      "startTime": "2024-03-01T00:10:00.000Z",
      "endTime": "2024-03-01T00:10:00.000Z"
     },
     "value": {
      "doubleValue": 0.04628773578358556
     }
    }
   ]
  }
 ]
}

如需采用 curl 命令、HTTP 请求或 JavaScript 格式查看请求,请在 API Explorer 中点击 全屏

C#

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

public static object ReadTimeSeriesReduce(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance.
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.CrossSeriesReducer = Aggregation.Types.Reducer.ReduceMean;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine("CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        Console.WriteLine("Average CPU utilization across all GCE instances:");
        Console.WriteLine($"  Last 10 min: {points[0].Value.DoubleValue}");
        Console.WriteLine($"  Last 10-20 min ago: {points[1].Value.DoubleValue}");
    }
    return 0;
}

Go

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"cloud.google.com/go/monitoring/apiv3/v2/monitoringpb"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
)

// readTimeSeriesReduce reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesReduce(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %w", err)
	}
	defer client.Close()
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			CrossSeriesReducer: monitoringpb.Aggregation_REDUCE_MEAN,
			PerSeriesAligner:   monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %w", err)
		}
		fmt.Fprintln(w, "Average CPU utilization across all GCE instances:")
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		if len(resp.GetPoints()) > 1 {
			fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
		}
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval =
    TimeInterval.newBuilder()
        .setStartTime(Timestamps.fromMillis(startMillis))
        .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
        .build();

Aggregation aggregation =
    Aggregation.newBuilder()
        .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
        .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
        .setCrossSeriesReducer(Aggregation.Reducer.REDUCE_MEAN)
        .build();

ListTimeSeriesRequest.Builder requestBuilder =
    ListTimeSeriesRequest.newBuilder()
        .setName(name.toString())
        .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
        .setInterval(interval)
        .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

try (final MetricServiceClient client = MetricServiceClient.create();) {
  ListTimeSeriesPagedResponse response = client.listTimeSeries(request);

  System.out.println("Got timeseries: ");
  for (TimeSeries ts : response.iterateAll()) {
    System.out.println(ts);
  }
}

Node.js

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

async function readTimeSeriesReduce() {
  /**
   * TODO(developer): Uncomment and edit the following lines of code.
   */
  // const projectId = 'YOUR_PROJECT_ID';

  const request = {
    name: client.projectPath(projectId),
    filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
    interval: {
      startTime: {
        // Limit results to the last 20 minutes
        seconds: Date.now() / 1000 - 60 * 20,
      },
      endTime: {
        seconds: Date.now() / 1000,
      },
    },
    // Aggregate results per matching instance
    aggregation: {
      alignmentPeriod: {
        seconds: 600,
      },
      crossSeriesReducer: 'REDUCE_MEAN',
      perSeriesAligner: 'ALIGN_MEAN',
    },
  };

  // Writes time series data
  const [result] = await client.listTimeSeries(request);
  if (result.length === 0) {
    console.log('No data');
    return;
  }
  const reductions = result[0].points;

  console.log('Average CPU utilization across all GCE instances:');
  console.log(`  Last 10 min: ${reductions[0].value.doubleValue}`);
  console.log(`  10-20 min ago: ${reductions[0].value.doubleValue}`);
}
readTimeSeriesReduce();

PHP

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\Client\MetricServiceClient;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest\TimeSeriesView;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_reduce($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_reduce(string $projectId, int $minutesAgo = 20): void
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = 'projects/' . $projectId;
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setCrossSeriesReducer(Aggregation\Reducer::REDUCE_MEAN);
    $aggregation->setPerSeriesAligner(Aggregation\Aligner::ALIGN_MEAN);

    $view = TimeSeriesView::FULL;
    $listTimeSeriesRequest = (new ListTimeSeriesRequest())
        ->setName($projectName)
        ->setFilter($filter)
        ->setInterval($interval)
        ->setView($view)
        ->setAggregation($aggregation);

    $result = $metrics->listTimeSeries($listTimeSeriesRequest);

    printf('Average CPU utilization across all GCE instances:' . PHP_EOL);
    if ($timeSeries = $result->iterateAllElements()->current()) {
        $reductions = $timeSeries->getPoints();
        printf('  Last 10 minutes: ');
        printf($reductions[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($reductions) > 1) {
            printf('  10-20 minutes ago: ');
            printf($reductions[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

from google.cloud import monitoring_v3

client = monitoring_v3.MetricServiceClient()
project_name = f"projects/{project_id}"

now = time.time()
seconds = int(now)
nanos = int((now - seconds) * 10**9)
interval = monitoring_v3.TimeInterval(
    {
        "end_time": {"seconds": seconds, "nanos": nanos},
        "start_time": {"seconds": (seconds - 3600), "nanos": nanos},
    }
)
aggregation = monitoring_v3.Aggregation(
    {
        "alignment_period": {"seconds": 1200},  # 20 minutes
        "per_series_aligner": monitoring_v3.Aggregation.Aligner.ALIGN_MEAN,
        "cross_series_reducer": monitoring_v3.Aggregation.Reducer.REDUCE_MEAN,
        "group_by_fields": ["resource.zone"],
    }
)

results = client.list_time_series(
    request={
        "name": project_name,
        "filter": 'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
        "interval": interval,
        "view": monitoring_v3.ListTimeSeriesRequest.TimeSeriesView.FULL,
        "aggregation": aggregation,
    }
)
for result in results:
    print(result)

Ruby

如需向 Monitoring 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

# Your Google Cloud Platform project ID
# project_id = "YOUR_PROJECT_ID"

client = Google::Cloud::Monitoring.metric_service
project_name = client.project_path project: project_id

interval = Google::Cloud::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i,
                                                    nanos:   now.nsec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 1200,
                                                      nanos:   now.nsec
filter = 'metric.type = "compute.googleapis.com/instance/cpu/utilization"'
view = Google::Cloud::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL
aggregation = Google::Cloud::Monitoring::V3::Aggregation.new(
  alignment_period:     { seconds: 1200 },
  per_series_aligner:   Google::Cloud::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN,
  cross_series_reducer: Google::Cloud::Monitoring::V3::Aggregation::Reducer::REDUCE_MEAN,
  group_by_fields:      ["resource.zone"]
)

results = client.list_time_series name:        project_name,
                                  filter:      filter,
                                  interval:    interval,
                                  view:        view,
                                  aggregation: aggregation
results.each do |result|
  p result
end

如果遇到困难,请参阅排查 Monitoring API 问题

后续步骤