Tutorial ini menunjukkan cara men-deploy dan menayangkan model bahasa besar (LLM) menggunakan GPU di Google Kubernetes Engine (GKE) dengan framework penayangan Text Generation Inference (TGI) dari Hugging Face. Tutorial ini memberikan dasar untuk memahami dan menjelajahi deployment LLM praktis untuk inferensi di lingkungan Kubernetes terkelola. Anda men-deploy container bawaan yang menjalankan TGI ke GKE. Anda juga mengonfigurasi GKE untuk memuat bobot Gemma 2B, 9B, dan 27B dari Hugging Face.
Tutorial ini ditujukan untuk engineer Machine Learning (ML), admin dan operator Platform, serta untuk spesialis Data dan AI yang tertarik untuk menggunakan kemampuan orkestrasi penampung Kubernetes untuk menayangkan LLM di hardware GPU H100, A100, dan L4. Untuk mempelajari lebih lanjut peran umum dan contoh tugas yang kami referensikan dalam konten Google Cloud , lihat Peran dan tugas pengguna GKE Enterprise umum.
Jika Anda memerlukan platform AI terkelola terpadu untuk membuat dan menayangkan model ML dengan cepat dan hemat biaya, sebaiknya coba solusi deployment Vertex AI kami.
Sebelum membaca halaman ini, pastikan Anda memahami hal-hal berikut:
Latar belakang
Bagian ini menjelaskan teknologi utama yang digunakan dalam panduan ini.
Gemma
Gemma adalah serangkaian model kecerdasan buatan (AI) generatif yang ringan dan tersedia secara terbuka yang dirilis dengan lisensi terbuka. Model AI ini tersedia untuk dijalankan di aplikasi, hardware, perangkat seluler, atau layanan yang dihosting.
Dalam panduan ini, kami memperkenalkan model berikut:
- Gemma untuk pembuatan teks, Anda juga dapat menyesuaikan model ini agar berspesialisasi dalam melakukan tugas tertentu.
- CodeGemma adalah kumpulan model ringan dan canggih yang dapat melakukan berbagai tugas coding seperti penyelesaian kode isi bagian tengah, pembuatan kode, pemahaman bahasa alami, penalaran matematika, dan mengikuti petunjuk.
Untuk mempelajari lebih lanjut, lihat dokumentasi Gemma.
GPU
GPU memungkinkan Anda mempercepat workload tertentu yang berjalan di node, seperti machine learning dan pemrosesan data. GKE menyediakan berbagai opsi jenis mesin untuk konfigurasi node, termasuk jenis mesin dengan GPU NVIDIA H100, L4, dan A100.
Inferensi Pembuatan Teks (TGI)
TGI adalah toolkit Hugging Face untuk men-deploy dan menayangkan LLM. TGI memungkinkan pembuatan teks berperforma tinggi untuk LLM open source populer, termasuk Gemma. TGI mencakup fitur seperti:
- Penerapan transformer yang dioptimalkan dengan Flash Attention dan PagedAttention
- Pengelompokan berkelanjutan untuk meningkatkan throughput penayangan secara keseluruhan
- Paralelisme tensor untuk inferensi yang lebih cepat di beberapa GPU
Untuk mempelajari lebih lanjut, lihat dokumentasi TGI.
Tujuan
- Siapkan lingkungan Anda dengan cluster GKE dalam mode Autopilot.
- Deploy TGI ke cluster Anda.
- Gunakan TGI untuk menayangkan model Gemma 2 melalui curl dan antarmuka chat web.
Sebelum memulai
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required API.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the required API.
-
Make sure that you have the following role or roles on the project: roles/container.admin, roles/iam.serviceAccountAdmin
Check for the roles
-
In the Google Cloud console, go to the IAM page.
Go to IAM - Select the project.
-
In the Principal column, find all rows that identify you or a group that you're included in. To learn which groups you're included in, contact your administrator.
- For all rows that specify or include you, check the Role column to see whether the list of roles includes the required roles.
Grant the roles
-
In the Google Cloud console, go to the IAM page.
Buka IAM - Pilih project.
- Klik Berikan akses.
-
Di kolom New principals, masukkan ID pengguna Anda. Ini biasanya adalah alamat email untuk Akun Google.
- Di daftar Pilih peran, pilih peran.
- Untuk memberikan peran tambahan, klik Tambahkan peran lain, lalu tambahkan setiap peran tambahan.
- Klik Simpan.
-
- Buat akun Hugging Face, jika Anda belum memilikinya.
- Pastikan project Anda memiliki kuota yang memadai untuk GPU. Untuk mempelajari lebih lanjut, lihat Tentang GPU dan Kuota alokasi.
Mendapatkan akses ke model
Untuk mendapatkan akses ke model Gemma untuk di-deploy ke GKE, Anda harus menandatangani perjanjian izin lisensi terlebih dahulu, lalu membuat token akses Hugging Face.
Menandatangani perjanjian izin lisensi
Anda harus menandatangani perjanjian izin untuk menggunakan Gemma. Ikuti petunjuk berikut:
- Akses halaman izin model di Kaggle.com.
- Verifikasi izin menggunakan akun Hugging Face Anda.
- Setujui persyaratan model.
Membuat token akses
Untuk mengakses model melalui Hugging Face, Anda memerlukan token Hugging Face.
Ikuti langkah-langkah berikut untuk membuat token baru jika Anda belum memilikinya:
- Klik Profil Anda > Setelan > Token Akses.
- Pilih New Token.
- Tentukan Nama pilihan Anda dan Peran minimal
Read
. - Pilih Buat token.
- Salin token yang dihasilkan ke papan klip Anda.
Menyiapkan lingkungan Anda
Dalam tutorial ini, Anda akan menggunakan Cloud Shell untuk mengelola resource yang dihosting diGoogle Cloud. Cloud Shell telah diinstal dengan software yang akan Anda perlukan untuk tutorial ini, termasuk kubectl
dan
gcloud CLI.
Untuk menyiapkan lingkungan Anda dengan Cloud Shell, ikuti langkah-langkah berikut:
Di konsol Google Cloud , luncurkan sesi Cloud Shell dengan mengklik Aktifkan Cloud Shell di konsol Google Cloud . Tindakan ini akan meluncurkan sesi di panel bawah konsol Google Cloud .
Tetapkan variabel lingkungan default:
gcloud config set project PROJECT_ID export PROJECT_ID=$(gcloud config get project) export REGION=REGION export CLUSTER_NAME=tgi export HF_TOKEN=HF_TOKEN
Ganti nilai berikut:
- PROJECT_ID: Project ID Google CloudAnda.
- REGION: Region yang mendukung jenis
akselerator yang ingin Anda gunakan, misalnya,
us-central1
untuk GPU L4. - HF_TOKEN: Token Hugging Face yang Anda buat sebelumnya.
Membuat dan mengonfigurasi resource Google Cloud
Ikuti petunjuk ini untuk membuat resource yang diperlukan.
Membuat cluster dan node pool GKE
Anda dapat menayangkan Gemma di GPU dalam cluster GKE Autopilot atau Standard. Sebaiknya gunakan cluster Autopilot untuk pengalaman Kubernetes yang dikelola sepenuhnya. Untuk memilih mode operasi GKE yang paling sesuai untuk workload Anda, lihat Memilih mode operasi GKE.
Autopilot
Jalankan perintah berikut di Cloud Shell:
gcloud container clusters create-auto ${CLUSTER_NAME} \
--project=${PROJECT_ID} \
--region=${REGION} \
--release-channel=rapid
GKE membuat cluster Autopilot dengan node CPU dan GPU seperti yang diminta oleh beban kerja yang di-deploy.
Standard
Di Cloud Shell, jalankan perintah berikut untuk membuat cluster Standar:
gcloud container clusters create ${CLUSTER_NAME} \ --project=${PROJECT_ID} \ --region=${REGION} \ --workload-pool=${PROJECT_ID}.svc.id.goog \ --release-channel=rapid \ --num-nodes=1
Pembuatan cluster mungkin memerlukan waktu beberapa menit.
Jalankan perintah berikut untuk membuat node pool untuk cluster Anda:
Gemma 2 2B
gcloud container node-pools create gpupool \ --accelerator type=nvidia-l4,count=1,gpu-driver-version=latest \ --project=${PROJECT_ID} \ --location=${REGION} \ --node-locations=${REGION}-a \ --cluster=${CLUSTER_NAME} \ --machine-type=g2-standard-8 \ --num-nodes=1
GKE membuat satu node pool yang berisi GPU L4 untuk setiap node.
Gemma 2 9B
gcloud container node-pools create gpupool \ --accelerator type=nvidia-l4,count=2,gpu-driver-version=latest \ --project=${PROJECT_ID} \ --location=${REGION} \ --node-locations=${REGION}-a \ --cluster=${CLUSTER_NAME} \ --machine-type=g2-standard-24 \ --num-nodes=1
GKE membuat satu node pool yang berisi dua GPU L4 untuk setiap node.
Gemma 2 27B
gcloud container node-pools create gpupool \ --accelerator type=nvidia-l4,count=4,gpu-driver-version=latest \ --project=${PROJECT_ID} \ --location=${REGION} \ --node-locations=${REGION}-a \ --cluster=${CLUSTER_NAME} \ --machine-type=g2-standard-48 \ --num-nodes=1
GKE membuat satu node pool yang berisi empat GPU L4 untuk setiap node.
Membuat secret Kubernetes untuk kredensial Hugging Face
Di Cloud Shell, lakukan hal berikut:
Konfigurasi
kubectl
untuk berkomunikasi dengan cluster Anda:gcloud container clusters get-credentials ${CLUSTER_NAME} --location=${REGION}
Buat Secret Kubernetes yang berisi token Hugging Face:
kubectl create secret generic hf-secret \ --from-literal=hf_api_token=${HF_TOKEN} \ --dry-run=client -o yaml | kubectl apply -f -
Men-deploy TGI
Di bagian ini, Anda akan men-deploy penampung TGI untuk menayangkan model Gemma yang ingin Anda gunakan.
Gemma 2 2B-it
Ikuti petunjuk ini untuk men-deploy model yang disesuaikan dengan petunjuk Gemma 2B.
Buat manifes
tgi-2-2b-it.yaml
berikut:Terapkan manifes:
kubectl apply -f tgi-2-2b-it.yaml
Gemma 2 9B-it
Ikuti petunjuk ini untuk men-deploy model yang disesuaikan dengan petunjuk Gemma 9B.
Buat manifes
tgi-2-9b-it.yaml
berikut:Terapkan manifes:
kubectl apply -f tgi-2-9b-it.yaml
Gemma 2 27B-it
Ikuti petunjuk ini untuk men-deploy model yang disesuaikan dengan petunjuk instruksi Gemma 2 27B.
Buat manifes
tgi-2-27b-it.yaml
berikut:Terapkan manifes:
kubectl apply -f tgi-2-27b-it.yaml
CodeGemma 7B-it
Ikuti petunjuk ini untuk men-deploy model yang disesuaikan dengan petunjuk instruksi CodeGemma 7B.
Buat manifes
tgi-codegemma-1.1-7b-it.yaml
berikut:Terapkan manifes:
kubectl apply -f tgi-codegemma-1.1-7b-it.yaml
Menayangkan model
Di bagian ini, Anda akan berinteraksi dengan model.
Menyiapkan penerusan port
Jalankan perintah berikut untuk menyiapkan penerusan port ke model:
kubectl port-forward service/llm-service 8000:8000
Outputnya mirip dengan hal berikut ini:
Forwarding from 127.0.0.1:8000 -> 8000
Berinteraksi dengan model menggunakan curl
Bagian ini menunjukkan cara melakukan pengujian smoke dasar untuk memverifikasi model pretrained atau yang disesuaikan dengan petunjuk yang di-deploy. Untuk memudahkan, bagian ini menjelaskan pendekatan pengujian menggunakan model Gemma 2 yang disesuaikan dengan instruksi dan CodeGemma.
Gemma 2
Dalam sesi terminal baru, gunakan curl
untuk melakukan chat dengan model Anda:
USER_PROMPT="I'm new to coding. If you could only recommend one programming language to start with, what would it be and why?"
curl -X POST http://localhost:8000/generate \
-H "Content-Type: application/json" \
-d @- <<EOF
{
"inputs": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
"parameters": {
"temperature": 0.90,
"top_p": 0.95,
"max_new_tokens": 128
}
}
EOF
Output berikut menunjukkan contoh respons model:
{"generated_text":"**Python**\n\n**Reasons why Python is a great choice for beginners:**\n\n* **Simple syntax:** Python uses clear and concise syntax, making it easy for beginners to pick up.\n* **Easy to learn:** Python's syntax is based on English, making it easier to learn than other languages.\n* **Large and supportive community:** Python has a massive and active community of developers who are constantly willing to help.\n* **Numerous libraries and tools:** Python comes with a vast collection of libraries and tools that make it easy to perform various tasks, such as data manipulation, web development, and machine learning.\n* **"}
CodeGemma
Dalam sesi terminal baru, gunakan curl
untuk melakukan chat dengan model Anda:
USER_PROMPT="Generate a python code example of a adding two numbers from a function called addNumbers"
curl -s -X POST http://localhost:8000/generate \
-H "Content-Type: application/json" \
-d @- <<EOF | jq -r .generated_text
{
"inputs": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
"parameters": {
"temperature": 0.90,
"top_p": 0.95,
"max_new_tokens": 2000
}
}
EOF
Output berikut menunjukkan contoh respons model:
def addNumbers(num1, num2):
sum = num1 + num2
return sum
# Get the input from the user
num1 = float(input("Enter the first number: "))
num2 = float(input("Enter the second number: "))
# Call the addNumbers function
sum = addNumbers(num1, num2)
# Print the result
print("The sum of", num1, "and", num2, "is", sum)
(Opsional) Berinteraksi dengan model melalui antarmuka chat Gradio
Di bagian ini, Anda akan mem-build aplikasi chat web yang memungkinkan Anda berinteraksi dengan model yang disesuaikan dengan petunjuk. Agar lebih mudah, bagian ini hanya menjelaskan pendekatan pengujian menggunakan model 2B-it.
Gradio adalah library Python yang memiliki wrapper ChatInterface
yang membuat antarmuka pengguna untuk chatbot.
Men-deploy antarmuka chat
Di Cloud Shell, simpan manifes berikut sebagai
gradio.yaml
:Terapkan manifes:
kubectl apply -f gradio.yaml
Tunggu hingga deployment tersedia:
kubectl wait --for=condition=Available --timeout=300s deployment/gradio
Menggunakan antarmuka chat
Jalankan perintah berikut di Cloud Shell:
kubectl port-forward service/gradio 8080:8080
Tindakan ini akan membuat penerusan port dari Cloud Shell ke layanan Gradio.
Klik tombol Web Preview yang dapat ditemukan di kanan atas taskbar Cloud Shell. Klik Pratinjau di Port 8080. Tab baru akan terbuka di browser Anda.
Berinteraksi dengan Gemma menggunakan antarmuka chat Gradio. Tambahkan perintah, lalu klik Kirim.
Memecahkan masalah
- Jika Anda mendapatkan pesan
Empty reply from server
, mungkin penampung belum selesai mendownload data model. Periksa log Pod lagi untuk menemukan pesanConnected
yang menunjukkan bahwa model siap ditayangkan. - Jika Anda melihat
Connection refused
, pastikan penerusan port Anda aktif.
Pembersihan
Agar tidak perlu membayar biaya pada akun Google Cloud Anda untuk resource yang digunakan dalam tutorial ini, hapus project yang berisi resource tersebut, atau simpan project dan hapus setiap resource.
Menghapus resource yang di-deploy
Agar tidak menimbulkan biaya pada akun Google Cloud Anda untuk resource yang Anda buat dalam panduan ini, jalankan perintah berikut:
gcloud container clusters delete ${CLUSTER_NAME} \
--region=${REGION}
Langkah selanjutnya
- Pelajari GPU di GKE lebih lanjut.
- Pelajari cara menggunakan Gemma dengan TGI di akselerator lain, termasuk GPU A100 dan H100, dengan melihat kode contoh di GitHub.
- Pelajari cara men-deploy workload GPU di Autopilot.
- Pelajari cara men-deploy workload GPU di Standard.
- Pelajari dokumentasi TGI.
- Jelajahi Model Garden Vertex AI.
- Temukan cara menjalankan workload AI/ML yang dioptimalkan dengan kemampuan orkestrasi platform GKE.