Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Dataproc bietet die Möglichkeit, Grafikprozessoren (Graphics Processing Units, GPUs) zu den Master- und Worker-Knoten für Google Compute Engine in einem Dataproc-Cluster hinzuzufügen. Sie können diese GPUs verwenden, um bestimmte Arbeitslasten wie maschinelles Lernen und Datenverarbeitung in Ihren Instanzen zu beschleunigen.
Weitere Informationen zu den Vorteilen von GPUs und den unterschiedlichen Arten von GPU-Hardware finden Sie unter GPUs in Compute Engine.
Hinweise
GPUs erfordern spezielle Treiber und Software. Diese Elemente sind auf Dataproc-Clustern nicht vorinstalliert.
Lesen Sie mehr über die GPU-Preisgestaltung für Compute Engine, um zu erfahren, mit welchen Kosten die Nutzung von GPUs in Ihren Instanzen verbunden ist.
Prüfen Sie auf der Seite "Kontingente" für Ihr Projekt, ob ausreichend GPU-Kontingente (NVIDIA_T4_GPUS, NVIDIA_P100_GPUS oder NVIDIA_V100_GPUS) vorhanden sind. Wenn auf der Seite "Kontingente" keine GPUs aufgeführt sind oder Sie zusätzliche GPU-Kontingente benötigen, können Sie eine Erhöhung des Kontingents beantragen.
GPU-Typen
Dataproc-Knoten unterstützen die folgenden GPU-Typen. Sie müssen den GPU-Typ angeben, wenn Sie Ihrem Dataproc-Cluster GPUs hinzufügen.
Fügen Sie dem Haupt-, den primären und den Worker-Knoten auf Abruf in einem Dataproc-Cluster GPUs hinzu, indem Sie die Felder InstanceGroupConfig.AcceleratorConfigacceleratorTypeUri und acceleratorCount als Teil der cluster.create-API-Anfrage ausfüllen.
Konsole
Klicken Sie in der Google Cloud Console auf der Seite Cluster erstellen im Bereich „Knoten konfigurieren“ in den Abschnitten „Master- und Worker-Knoten“ auf „CPU PLATFORM AND GPU“ → „GPUs“ → „GPU HINZUFÜGEN“, um die Anzahl der GPUs und den GPU-Typ für die Knoten anzugeben.
GPU-Treiber installieren
Zum Verwenden von GPUs, die Dataproc-Knoten hinzugefügt wurden, sind GPU-Treiber erforderlich.
So installieren Sie GPU-Treiber:
Nachdem Sie den GPU-Treiber auf den Dataproc-Knoten installiert haben, können Sie prüfen, ob der Treiber ordnungsgemäß funktioniert. Stellen Sie eine SSH-Verbindung zum Masterknoten Ihres Dataproc-Clusters her und führen Sie den folgenden Befehl aus:
Wenn Sie einen Job an Spark senden, können Sie das spark.executorEnv-Attribut Laufzeitumgebung der Spark-Konfiguration mit der Umgebungsvariablen LD_PRELOAD verwenden, um die erforderlichen Bibliotheken vorab zu laden.
Führen Sie das folgende Beispiel mit spark-shell aus, um eine Matrixberechnung durchzuführen:
import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.linalg.distributed._
import java.util.Random
def makeRandomSquareBlockMatrix(rowsPerBlock: Int, nBlocks: Int): BlockMatrix = {
val range = sc.parallelize(1 to nBlocks)
val indices = range.cartesian(range)
return new BlockMatrix(
indices.map(
ij => (ij, Matrices.rand(rowsPerBlock, rowsPerBlock, new Random()))),
rowsPerBlock, rowsPerBlock, 0, 0)
}
val N = 1024 * 4
val n = 2
val mat1 = makeRandomSquareBlockMatrix(N, n)
val mat2 = makeRandomSquareBlockMatrix(N, n)
val mat3 = mat1.multiply(mat2)
mat3.blocks.persist.count
println("Processing complete!")
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],["Zuletzt aktualisiert: 2025-09-04 (UTC)."],[[["\u003cp\u003eDataproc clusters can utilize GPUs attached to their master and worker nodes to accelerate machine learning and data processing workloads.\u003c/p\u003e\n"],["\u003cp\u003eThere are no additional Dataproc charges for using GPUs; however, standard Compute Engine charges for GPU usage apply and must be reviewed.\u003c/p\u003e\n"],["\u003cp\u003eBefore using GPUs on Dataproc, special drivers need to be installed, and users should verify they have sufficient GPU quota in their project.\u003c/p\u003e\n"],["\u003cp\u003eYou can attach different types of GPUs, including \u003ccode\u003envidia-tesla-l4\u003c/code\u003e, \u003ccode\u003envidia-tesla-a100\u003c/code\u003e, and others, to your Dataproc cluster nodes via gcloud, the REST API, or the Google Cloud console.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003espark.executorEnv\u003c/code\u003e property can be configured in Spark jobs to properly utilize GPUs by preloading the necessary libraries through the use of the \u003ccode\u003eLD_PRELOAD\u003c/code\u003e environment variable.\u003c/p\u003e\n"]]],[],null,["Dataproc provides the ability for graphics processing units (GPUs) to be attached to the master and worker Compute Engine nodes in a Dataproc cluster. You can use these GPUs to accelerate specific workloads on your instances, such as machine learning and data processing.\n\nFor more information about what you can do with GPUs and what types of GPU hardware are available, read [GPUs on Compute Engine](/compute/docs/gpus).\n| There are no additional [Dataproc pricing](/dataproc/pricing) charges added to Compute Engine charges for GPUs used in Dataproc clusters.\n\nBefore you begin\n\n- GPUs require special drivers and software. These items are not pre-installed on Dataproc clusters.\n- Read about [GPU pricing on Compute Engine](/compute/pricing#gpus) to understand the cost to use GPUs in your instances.\n- Read about [restrictions for instances with GPUs](/compute/docs/gpus#restrictions) to learn how these instances function differently from non-GPU instances.\n- Check the [quotas page](https://console.cloud.google.com/iam-admin/quotas) for your project to ensure that you have sufficient GPU quota (`NVIDIA_T4_GPUS`, `NVIDIA_P100_GPUS`, or `NVIDIA_V100_GPUS`) available in your project. If GPUs are not listed on the quotas page or you require additional GPU quota, [request a quota increase](/compute/quotas#requesting_additional_quota).\n\nTypes of GPUs\n\nDataproc nodes support the following GPU types. You must specify\nGPU type when attaching GPUs to your Dataproc cluster.\n\n- `nvidia-tesla-l4` - NVIDIA® Tesla® L4\n- `nvidia-tesla-a100` - NVIDIA® Tesla® A100\n- `nvidia-tesla-p100` - NVIDIA® Tesla® P100\n- `nvidia-tesla-v100` - NVIDIA® Tesla® V100\n- `nvidia-tesla-p4` - NVIDIA® Tesla® P4\n- `nvidia-tesla-t4` - NVIDIA® Tesla® T4\n- `nvidia-tesla-p100-vws` - NVIDIA® Tesla® P100 Virtual Workstations\n- `nvidia-tesla-p4-vws` - NVIDIA® Tesla® P4 Virtual Workstations\n- `nvidia-tesla-t4-vws` - NVIDIA® Tesla® T4 Virtual Workstations\n\nAttach GPUs to clusters \n\ngcloud\n\nAttach GPUs to the master and primary and secondary worker nodes in a Dataproc cluster when\ncreating the cluster using the\n[`‑‑master-accelerator`](/sdk/gcloud/reference/dataproc/clusters/create#--master-accelerator),\n[`‑‑worker-accelerator`](/sdk/gcloud/reference/dataproc/clusters/create#--worker-accelerator), and\n[`‑‑secondary-worker-accelerator`](/sdk/gcloud/reference/dataproc/clusters/create#--secondary-worker-accelerator) flags. These flags take the\nfollowing two values:\n\n1. the type of GPU to attach to a node, and\n2. the number of GPUs to attach to the node.\n\nThe type of GPU is required, and the number of GPUs is optional (the default\nis 1 GPU).\n\n\n**Example:** \n\n```\ngcloud dataproc clusters create cluster-name \\\n --region=region \\\n --master-accelerator type=nvidia-tesla-t4 \\\n --worker-accelerator type=nvidia-tesla-t4,count=4 \\\n --secondary-worker-accelerator type=nvidia-tesla-t4,count=4 \\\n ... other flags\n```\n\nTo use GPUs in your cluster, you must\n[install GPU drivers](/compute/docs/gpus/install-drivers-gpu).\n\nREST API\n\nAttach GPUs to the master and primary and secondary worker nodes in a Dataproc cluster\nby filling in the\n[InstanceGroupConfig.AcceleratorConfig](/dataproc/docs/reference/rest/v1/ClusterConfig#AcceleratorConfig)\n`acceleratorTypeUri` and `acceleratorCount` fields as part of the\n[cluster.create](/dataproc/docs/reference/rest/v1/projects.regions.clusters/create)\nAPI request.\n\nConsole\n\nClick CPU PLATFORM AND GPU→GPUs→ADD GPU in the master and worker nodes sections of the\nConfigure nodes panel on the [Create a cluster](https://console.cloud.google.com/dataproc/clustersAdd)\npage in the Google Cloud console to specify the number of GPUs and GPU type\nfor the nodes.\n\nInstall GPU drivers\n\nGPU drivers are required to utilize any GPUs attached to Dataproc nodes.\nTo install GPU drivers, see the following instructions:\n\n- [Spark Rapids](https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/spark-rapids).\n- [GPU ML Libraries](https://github.com/GoogleCloudDataproc/initialization-actions/tree/master/gpu).\n\nVerify GPU driver install\n\nAfter you have finished installing the GPU driver on your Dataproc nodes, you can verify\nthat the driver is functioning properly. SSH into the master node of your Dataproc cluster\nand run the following command: \n\n```\nnvidia-smi\n```\n\nIf the driver is functioning properly, the output will display the driver version and GPU statistics (see [Verifying the GPU driver install](/compute/docs/gpus/install-drivers-gpu#verify-driver-install)).\n| **Note:** The driver may not work correctly after a restart of the VM following a Linux [Unattended Upgrade](https://wiki.debian.org/UnattendedUpgrades). Possible solutions: You can disable unattended upgrades or exclude kernel updates by editing the unattended upgrades service config.\n\nSpark configuration\n\nWhen you [submit a job](/dataproc/docs/guides/submit-job) to Spark,\nyou can use the `spark.executorEnv` Spark configuration\n[runtime environment property](https://spark.apache.org/docs/latest/configuration.html#runtime-environment)\nproperty with the `LD_PRELOAD` environment variable to preload needed libraries.\n\nExample: \n\n```\ngcloud dataproc jobs submit spark --cluster=CLUSTER_NAME \\\n --region=REGION \\\n --class=org.apache.spark.examples.SparkPi \\\n --jars=file:///usr/lib/spark/examples/jars/spark-examples.jar \\\n --properties=spark.executorEnv.LD_PRELOAD=libnvblas.so,spark.task.resource.gpu.amount=1,spark.executor.resource.gpu.amount=1,spark.executor.resource.gpu.discoveryScript=/usr/lib/spark/scripts/gpu/getGpusResources.sh\n```\n\nExample GPU job\n\nYou can test GPUs on Dataproc by running any of the following jobs,\nwhich benefit when run with GPUs:\n\n1. Run one of the [Spark ML examples](https://github.com/apache/spark/blob/master/mllib/src/main/scala/org/apache/spark/ml/classification/MultilayerPerceptronClassifier.scala).\n2. Run the following example with `spark-shell` to run a matrix computation:\n\n```\nimport org.apache.spark.mllib.linalg._\nimport org.apache.spark.mllib.linalg.distributed._\nimport java.util.Random\n\ndef makeRandomSquareBlockMatrix(rowsPerBlock: Int, nBlocks: Int): BlockMatrix = {\n val range = sc.parallelize(1 to nBlocks)\n val indices = range.cartesian(range)\n return new BlockMatrix(\n indices.map(\n ij =\u003e (ij, Matrices.rand(rowsPerBlock, rowsPerBlock, new Random()))),\n rowsPerBlock, rowsPerBlock, 0, 0)\n}\n\nval N = 1024 * 4\nval n = 2\nval mat1 = makeRandomSquareBlockMatrix(N, n)\nval mat2 = makeRandomSquareBlockMatrix(N, n)\nval mat3 = mat1.multiply(mat2)\nmat3.blocks.persist.count\nprintln(\"Processing complete!\")\n```\n\nWhat's Next\n\n- Learn how to [create a Compute Engine instance with attached GPUs](/compute/docs/gpus/add-gpus).\n- Learn more about [GPU machine types](/compute/docs/gpus)."]]