Lesevorgänge

Auf dieser Seite werden die Arten von Leseanfragen beschrieben, die Sie an Bigtable senden können. Außerdem werden Auswirkungen auf die Leistung erörtert und einige Empfehlungen für bestimmte Arten von Abfragen gegeben. Bevor Sie diese Seite lesen, sollten Sie sich mit den Informationen unter Übersicht über Bigtable vertraut machen.

Übersicht

Leseanfragen an Bigtable geben den Inhalt der angeforderten Zeilen in Schlüsselreihenfolge zurück, also in der Reihenfolge, in der sie gespeichert sind. Alle Schreibvorgänge, die eine Antwort zurückgegeben haben, können gelesen werden.

Die von der Tabelle unterstützten Abfragen sollten dabei helfen, den für Ihren Anwendungsfall am besten geeigneten Lesetyp zu bestimmen. Bigtable-Leseanfragen fallen in zwei allgemeine Kategorien:

  • Einzelne Zeile lesen
  • Scans oder Lesen mehrerer Zeilen

Lesevorgänge sind auf Zeilenebene atomar. Wenn Sie also eine Leseanfrage für eine Zeile senden, gibt Bigtable entweder die gesamte Zeile zurück oder im Falle einer fehlgeschlagenen Anfrage nichts aus der Zeile. Eine Teilzeile wird nie zurückgegeben, es sei denn, Sie fordern eine solche an.

Wir empfehlen Ihnen dringend, unsere Cloud Bigtable-Clientbibliotheken zum Lesen von Daten aus einer Tabelle zu verwenden und nicht die API direkt aufzurufen. Codebeispiele, die das Senden von Leseanfragen zeigen, sind in mehreren Sprachen verfügbar. Alle Leseanfragen führen den API-Aufruf ReadRows aus.

Daten mit Data Boost-Serverless Computing lesen

Mit Bigtable Data Boost können Sie Batchlesejobs und ‑abfragen ausführen, ohne den täglichen Anwendungsverkehr zu beeinträchtigen. Data Boost ist ein Serverloser Computing-Dienst, mit dem Sie Bigtable lesen können Daten, während die Kernanwendung die Knoten des Clusters für Computing nutzt.

Data Boost eignet sich ideal für Scans und wird für das Lesen einzelner Zeilen nicht empfohlen. Sie können Data Boost nicht für umgekehrte Scans verwenden. Weitere Informationen und Eignungskriterien finden Sie in der Data Boost-Hilfe .

Einzeilige Lesevorgänge

Sie können eine einzelne Zeile anhand des Zeilenschlüssels anfordern. Einzeilige Lesevorgänge, auch bekannt wie Punktlesevorgänge, sind nicht kompatibel mit Daten-Optimierung: Codebeispiele sind für die folgenden Varianten verfügbar:

Scans

Scans sind die gängigste Methode, um Daten aus Bigtable zu lesen. Wenn Sie einen Bereich von zusammenhängenden Zeilen oder mehrere Bereiche von Zeilen aus Bigtable lesen möchten, können Sie ein Zeilenschlüsselpräfix oder Start- und Endzeilenschlüssel angeben. Codebeispiele sind für die folgenden Varianten verfügbar:

Reverse-Scans

Mit Rückwärtsabfragen können Sie einen Zeilenbereich rückwärts lesen, indem Sie entweder ein Zeilenschlüsselpräfix oder einen Zeilenbereich angeben. Das Präfix des Zeilenschlüssels wird als Ausgangspunkt für das Rückwärtslesen verwendet. Wenn Sie einen Zeilenbereich angeben, wird der Schlüssel der Endzeile als Ausgangspunkt für den Scan verwendet.

Das Scannen in umgekehrter Reihenfolge kann für die folgenden Szenarien nützlich sein:

Rückwärtssuchen sind weniger effizient als Vorwärtssuchen. Im Allgemeinen sollten Sie Ihre Zeilenschlüssel so gestalten, dass die meisten Scans vorwärts erfolgen. Umgekehrte Scans verwenden für kurze Scans, z. B. mit maximal 50 Zeilen, um eine niedrige Antwortzeit zu gewährleisten.

Wenn Sie in umgekehrter Reihenfolge scannen möchten, setzen Sie den Wert für das Feld ReadRowsRequest auf „true“. Der Standardwert lautet „falsch“.

Rückwärtssuchen sind mit den folgenden Clientbibliotheken verfügbar:

  • Bigtable-Clientbibliothek für C++ Version 2.18.0 oder höher
  • Bigtable-Clientbibliothek für Go Version 1.21.0 oder höher
  • Bigtable-Clientbibliothek für Java Version 2.24.1 oder höher
  • Bigtable HBase-Client für Java, Version 2.10.0 oder höher

Codebeispiele zum Verwenden von umgekehrten Scans finden Sie unter Scan in umgekehrt.

Anwendungsbeispiele

Die folgenden Beispiele zeigen, wie mit umgekehrten Scans der letzte Zeitpunkt ermittelt werden kann, eine Kundin oder ein Kunde sein Passwort und Preisschwankungen für ein Produkt bei einem bestimmten Tag.

Passwort zurücksetzen

Angenommen, Ihre Zeilenschlüssel enthalten jeweils eine Kundennummer und ein Datum im Format 123ABC#2022-05-02. Eine der Spalten ist password_reset, in der die Stunde gespeichert ist, zu der das Passwort zurückgesetzt wurde. Bigtable speichert die Daten automatisch lexikografisch, wie die folgen. Die Spalte ist nicht für Zeilen (Tage) vorhanden, in denen das Passwort wurde nicht zurückgesetzt.

`123ABC#2022-02-12,password_reset:03`
`123ABC#2022-04-02,password_reset:11`
`123ABC#2022-04-14`
`123ABC#2022-05-02`
`223ABC#2022-05-22`

Wenn Sie herausfinden möchten, wann der Kunde 123ABC sein Passwort zuletzt zurückgesetzt hat, können Sie in umgekehrter Reihenfolge einen Bereich von 123ABC# bis 123ABC#<DATE> mit dem heutigen Datum oder einem Datum in der Zukunft für alle Zeilen mit der Spalte password_reset mit einem Zeilenlimit von 1 durchsuchen.

Preisänderungen

In diesem Beispiel enthalten Ihre Zeilenschlüssel Werte für Produkt, Modell und Zeitstempel, und eine der Spalten den Preis für das Produkt und Modell zu einem bestimmten .

`productA#model2#1675604471,price:82.63`
`productA#model2#1676219411,price:82.97`
`productA#model2#1677681011,price:83.15`
`productA#model2#1680786011,price:83.99`
`productA#model2#1682452238,price:83.12`

Wenn Sie Preisschwankungen um den Preis am 14. Februar 2023 ermitteln möchten, obwohl in der Tabelle kein Zeilenschlüssel für dieses Datum vorhanden ist, können Sie einen Vorwärtsscan ab dem Zeilenschlüssel productA#model2#1676376000 für N Zeilen und dann einen Rückwärtsscan für dieselbe Anzahl von Zeilen ab derselben Startzeile ausführen. Die beiden Scans geben Ihnen die Preise vor und nach dem angegebenen Zeitpunkt an.

Gefilterte Lesevorgänge

Wenn Sie nur Zeilen mit bestimmten Werten oder Teilzeilen benötigen, können Sie einen Filter in der Leseanfrage verwenden. Filter ermöglichen eine äußerst selektive Auswahl von Daten.

Mit Filtern können Sie außerdem gewährleisten, dass Lesevorgänge den von der Tabelle verwendeten Richtlinien für die automatische Speicherbereinigung entsprechen. Dies ist besonders nützlich, wenn Sie häufig neue Zellen mit Zeitstempeln in vorhandene Spalten schreiben. Da es bei der automatischen Speicherbereinigung bis zu einer Woche dauern kann, bis abgelaufene Daten entfernt sind, können Sie durch Verwenden eines Zeitstempelbereichs-Filters beim Lesen von Daten dafür sorgen, dass nicht mehr Daten als benötigt gelesen lesen.

In der Filterübersicht finden Sie ausführliche Erläuterungen der Filtertypen, die Sie verwenden können. Unter Filter verwenden werden Beispiele in mehreren Sprachen gezeigt.

Daten aus einer autorisierten Ansicht lesen

Um Daten aus einer autorisierten Datenansicht zu lesen, müssen Sie eine der folgenden Methoden verwenden:

  • gcloud-CLI
  • Bigtable-Client für Java

Die anderen Bigtable-Clientbibliotheken unterstützen den Zugriff auf Ansichten noch nicht.

Jede Methode, die die ReadRows- oder SampleRowKeys-Methode des Bigtable Data API wird unterstützt. Sie geben die ID der autorisierten Ansicht an. zusätzlich zur Tabellen-ID hinzufügen.

Lesevorgänge und Leistung

Lesevorgänge mit Filtern sind langsamer als Lesevorgänge ohne Filter und erhöhen außerdem die CPU-Auslastung. Allerdings können Sie damit die beanspruchte Netzwerkbandbreite erheblich reduzieren, da die zurückgegebene Datenmenge begrenzt wird. Im Allgemeinen sollten Filter verwendet werden, um die Durchsatzeffizienz und nicht die Latenz zu steuern.

Wenn Sie die Leseleistung optimieren möchten, sollten Sie die folgenden Strategien in Betracht ziehen:

  1. Schränken Sie das Rowset so weit wie möglich ein. Die Begrenzung der Anzahl der Zeilen, die Ihre Knoten scannen müssen, ist der erste Schritt zur Verbesserung der Zeit bis zum ersten Byte und der Gesamtabfragelatenz. Wenn Sie das Rowset nicht beschränken, muss Bigtable höchstwahrscheinlich die gesamte Tabelle scannen. Aus diesem Grund empfehlen wir Ihnen, das Schema so zu entwerfen, dass Ihre häufigsten Abfragen diese Strategie befolgen können.

  2. Nach dem Einschränken des Rowsets können Sie zur weiteren Leistungsoptimierung einen einfachen Filter hinzufügen. Das Einschränken der Gruppe von Spalten oder der Anzahl der zurückgegebenen Versionen erhöht im Allgemeinen nicht die Latenz und kann manchmal dazu beitragen, dass Bigtable irrelevante Daten in jeder Zeile effizienter bei der Suche übergeht.

  3. Wenn Sie die Leseleistung nach den ersten beiden Strategien noch weiter optimieren möchten, sollten Sie einen komplexeren Filter verwenden. Sie könnten dafür verschiedene Gründe haben:

    • Sie erhalten immer noch viele Daten, die Sie nicht benötigen.
    • Sie möchten den Anwendungscode vereinfachen, indem Sie die Abfrage in Bigtable verschieben.

    Beachten Sie jedoch, dass Filter, die Bedingungen, Verschränkung oder reguläre Ausdrücke erfordern, Übereinstimmungen bei großen Werten verursachen in der Regel mehr Schaden als Nutzen, wenn sie die meisten die gescannten Daten durch. Dies führt zu einer erhöhten CPU-Auslastung im Cluster ohne große Einsparungen auf der Clientseite.

Zusätzlich zu diesen Strategien sollten Sie eine große Anzahl nicht zusammenhängender Zeilenschlüssel oder Zeilenbereiche nicht in einer einzelnen Leseanforderung lesen. Wenn Sie in einer einzelnen Anfrage Hunderte von Zeilenschlüsseln oder Zeilenbereichen anfordern, scannt Bigtable die Tabelle und liest die angeforderten Zeilen sequenziell. Diese fehlende Parallelität wirkt sich auf die gesamte Latenz aus und alle Lesevorgänge, die einen Hot-Knoten erreichen, können die tail-Latenz erhöhen. Je mehr Zeilenbereiche angefordert werden, desto länger dauert der Lesevorgang. Wenn diese Latenz nicht akzeptabel ist, sollten Sie stattdessen mehrere gleichzeitige Anfragen senden, die jeweils weniger Zeilenbereiche abrufen.

Im Allgemeinen optimiert das Lesen weiterer Zeilenbereiche in einer einzelnen Anfrage den Durchsatz, jedoch nicht die Latenz. Werden weniger Zeilenbereiche in mehreren gleichzeitigen Anfragen gelesen, wird dadurch die Latenz, nicht der Durchsatz optimiert. Die richtige Balance zwischen Latenz und Durchsatz hängt von den Anforderungen Ihrer Anwendung ab. Dies kann durch eine Anpassung der Anzahl gleichzeitiger Leseanfragen und der Anzahl an Zeilenbereichen in einer Anfrage erreicht werden.

Große Zeilen

Bigtable begrenzt die Größe einer Zeile auf 256 MB. Es ist jedoch möglich, dass dieser Höchstwert versehentlich überschritten wird. Wenn Sie eine Zeile lesen müssen, die größer als das Limit geworden ist, können Sie die Anfrage paginieren und einen cells per row limit-Filter sowie einen cells per row offset-Filter verwenden. Beachten Sie, dass der Lesevorgang unter Umständen nicht atomar ist, wenn ein Schreibvorgang für eine Zeile zwischen den paginierten Leseanfragen eingeht.

Nächste Schritte