Lire les données de métriques

Vous trouverez sur cette page la procédure à suivre pour lire des données de métriques, également appelées données de séries temporelles, à l'aide de la méthode timeSeries.list dans l'API Monitoring. Il existe plusieurs manières d'utiliser cette méthode :

  • Pour exécuter la méthode list sans écrire de code, les exemples présentés dans les onglets PROTOCOLE de cette page utilisent l'explorateur d'API basé sur des formulaires. Pour en savoir plus sur cet outil, consultez la page relative à l'explorateur d'API.

  • Pour apprendre à utiliser la méthode list avec les langages de programmation sélectionnés, consultez les exemples de code exécutable décrits sur cette page.

  • Pour parcourir vos données de séries temporelles et les afficher sous forme de graphique, consultez la page Ressources > Explorateur de métriques dans la section Stackdriver Monitoring de la console Google Cloud Platform. L'explorateur de métriques se charge d'appeler les méthodes de l'API.

    Accéder à la page "Explorateur de métriques"

Pour obtenir une présentation des métriques et des séries temporelles, consultez la section Métriques, séries temporelles et ressources.

Présentation

Chaque appel de la méthode timeSeries.list peut renvoyer n'importe quel nombre de séries temporelles à partir d'un seul type de métrique. Par exemple, si vous utilisez Google Compute Engine, le type de métrique compute.googleapis.com/instance/cpu/usage_time contient une série temporelle distincte pour chacune de vos instances de VM.

Vous pouvez spécifier les données de séries temporelles souhaitées en fournissant les éléments suivants :

  • Une expression de filtre qui spécifie le type de métrique. Le filtre peut éventuellement permettre de sélectionner un sous-ensemble de séries temporelles de la métrique, si vous spécifiez les ressources à l'origine des séries temporelles recherchées, ou si vous spécifiez des valeurs pour certains de leurs libellés.
  • Un intervalle de temps qui limite la quantité de données renvoyée.
  • Une manière de combiner plusieurs séries temporelles afin de produire un résumé global des données (facultatif). Pour en savoir plus et voir des exemples, consultez la section Agréger des données.

Filtres de séries temporelles

Pour spécifier les séries temporelles à récupérer, transmettez un filtre de séries temporelles à la méthode list. Voici quelques composants de filtre courants :

  • Le filtre doit spécifier un seul type de métrique. Exemple :

    metric.type = "compute.googleapis.com/instance/cpu/usage_time"
    

    Pour récupérer des métriques personnalisées, remplacez le préfixe "metric.type" dans le filtre par custom.googleapis.com ou un autre préfixe si ce dernier est utilisé. external.googleapis.com est fréquemment utilisé.

  • Le filtre peut spécifier des valeurs pour les libellés de variables de la métrique. Le type de métrique détermine quels libellés sont disponibles. Exemple :

    (metric.label.instance_name = "your-instance-id" OR
      metric.label.instance_name = "your-other-instance-id")
    

    Notez que label est accepté, même si l'objet de métrique réel utilise labels comme clé.

  • Le filtre peut limiter les séries temporelles à celles qui contiennent un type de ressource surveillée spécifique :

    resource.type = "gae_app"
    

Tous ces composants peuvent être combinés pour former un filtre de série temporelle unique. Exemple :

metric.type = "compute.googleapis.com/instance/cpu/usage_time"
AND (metric.label.instance_name = "your-instance-id" OR
  metric.label.instance_name = "your-other-instance-id")

Si vous ne spécifiez pas de valeurs pour les libellés de métrique, la méthode list renvoie une série temporelle pour chaque combinaison de valeurs dans les libellés non spécifiés. Notez que la méthode ne renvoie que des séries temporelles contenant des données.

Intervalles de temps

Lorsque vous appelez la méthode timeSeries.list, vous devez spécifier les valeurs des paramètres interval.startTime et interval.endTime. La période de temps résultante inclut l'heure de fin, mais pas l'heure de début, sauf si les deux sont identiques. Attention, ce résultat peut être déroutant. Considérons ces exemples d'intervalles (start, end] :

(T, T+1]
Cet intervalle ne contient pas T.
(T-1, T]
Cet intervalle contient T.
(T, T]
Cas particulier et inhabituel, cet intervalle ne comprend que le temps T. Si vous omettez de spécifier une heure de début, c'est l'intervalle que vous obtenez.

Valeurs dans les intervalles de temps

Les heures de début et de fin doivent être spécifiées en tant que chaînes au format RFC 3339. Exemple :

2018-05-11T12:34:56+04:00
2018-05-11T12:34:56.992Z

La commande date -Iseconds sous Linux est utile pour générer des horodatages.

Plages dans les intervalles de temps

Un intervalle de temps est spécifié par une heure de début et une heure de fin. L'heure de début n'est toutefois pas requise par l'API. Si aucune heure de début n'est spécifiée, l'heure de fin est définie par défaut. Cela n'a de sens sémantique que pour les métriques GAUGE, qui mesurent des points dans le temps.

Si votre métrique est CUMULATIVE ou DELTA, elle mesure alors une accumulation ou un changement dans le temps. Pour les métriques "dans le temps", les heures de début et de fin de l'intervalle doivent être spécifiées. De plus, l'heure de début doit être antérieure à l'heure de fin.

Pour en savoir plus, consultez la section Genres de métriques.

Opérations de listes de base

La méthode timeSeries.list peut servir à renvoyer des données brutes simples ou des données hautement traitées. Cette section présente certaines utilisations de base.

Exemple : Répertorier les séries temporelles disponibles

Cet exemple montre comment répertorier uniquement les noms et les descriptions de la série temporelle correspondant à un filtre, plutôt que de renvoyer toutes les données disponibles :

Protocole

Voici des exemples de paramètres pour timeSeries.list :

  • name : projects/[PROJECT_ID]
  • filter : metric.type = "compute.googleapis.com/instance/cpu/utilization"
  • interval.start_time : 2018-05-11T00:00:00Z
  • interval.end_time : 2018-05-11T00:20:00Z
  • fields : timeSeries.metric

Essayer

Avant de cliquer sur le bouton Exécuter, remplacez [PROJECT_ID] par l'ID de votre projet.

L'exemple de résultat ci-dessous montre les séries temporelles de deux instances de VM différentes :

{
  "timeSeries": [
    {
      "metric": {
        "labels": {
          "instance_name": "your-first-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    },
    {
      "metric": {
        "labels": {
          "instance_name": "your-second-instance"
        },
        "type": "compute.googleapis.com/instance/cpu/utilization"
      },
    }
  ]
}

C#

public static object ReadTimeSeriesFields(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    Console.WriteLine($"metricType{ metricType}");
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Headers,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.Write("Found data points for the following instances:");
    foreach (var item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
	monitoringpb "google.golang.org/genproto/googleapis/monitoring/v3"
)

// readTimeSeriesFields reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesFields(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %v", err)
	}
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		View: monitoringpb.ListTimeSeriesRequest_HEADERS,
	}
	fmt.Fprintln(w, "Found data points for the following instances:")
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %v", err)
		}
		fmt.Fprintf(w, "\t%v\n", resp.GetMetric().GetLabels()["instance_name"])
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

MetricServiceClient metricServiceClient = MetricServiceClient.create();
String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval = TimeInterval.newBuilder()
    .setStartTime(Timestamps.fromMillis(startMillis))
    .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
    .build();

ListTimeSeriesRequest.Builder requestBuilder = ListTimeSeriesRequest.newBuilder()
    .setName(name.toString())
    .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
    .setInterval(interval)
    .setView(ListTimeSeriesRequest.TimeSeriesView.HEADERS);

ListTimeSeriesRequest request = requestBuilder.build();

ListTimeSeriesPagedResponse response = metricServiceClient.listTimeSeries(request);

System.out.println("Got timeseries headers: ");
for (TimeSeries ts : response.iterateAll()) {
  System.out.println(ts);
}

Node.js

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

/**
 * TODO(developer): Uncomment and edit the following lines of code.
 */
// const projectId = 'YOUR_PROJECT_ID';

const request = {
  name: client.projectPath(projectId),
  filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
  interval: {
    startTime: {
      // Limit results to the last 20 minutes
      seconds: Date.now() / 1000 - 60 * 20,
    },
    endTime: {
      seconds: Date.now() / 1000,
    },
  },
  // Don't return time series data, instead just return information about
  // the metrics that match the filter
  view: 'HEADERS',
};

// Writes time series data
const [timeSeries] = await client.listTimeSeries(request);
console.log('Found data points for the following instances:');
timeSeries.forEach(data => {
  console.log(data.metric.labels.instance_name);
});

PHP

use Google\Cloud\Monitoring\V3\MetricServiceClient;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest_TimeSeriesView;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_fields($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_fields($projectId, $minutesAgo = 20)
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = $metrics->projectName($projectId);
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = ListTimeSeriesRequest_TimeSeriesView::HEADERS;

    $result = $metrics->listTimeSeries(
        $projectName,
        $filter,
        $interval,
        $view);

    printf('Found data points for the following instances:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
    }
}

Python

client = monitoring_v3.MetricServiceClient()
project_name = client.project_path(project_id)
interval = monitoring_v3.types.TimeInterval()
now = time.time()
interval.end_time.seconds = int(now)
interval.end_time.nanos = int(
    (now - interval.end_time.seconds) * 10**9)
interval.start_time.seconds = int(now - 300)
interval.start_time.nanos = interval.end_time.nanos
results = client.list_time_series(
    project_name,
    'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
    interval,
    monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.HEADERS)
for result in results:
    print(result)

Ruby

client = Google::Cloud::Monitoring::Metric.new
project_name = Google::Cloud::Monitoring::V3::MetricServiceClient.project_path project_id

interval = Google::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i, nanos: now.usec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 300, nanos: now.usec

results = client.list_time_series(
  project_name,
  'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
  interval,
  Google::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::HEADERS
)
results.each do |result|
  p result
end

Consultez la section Résoudre des problèmes d'appels d'API si vous rencontrez des difficultés.

Exemple : Obtenir des données de séries temporelles

Cet exemple renvoie l'ensemble des informations disponibles pour la requête timeSeries.list, y compris les données de métriques, à partir d'instances Compute Engine au cours des 20 dernières minutes.

Protocole

L'exemple de protocole limite davantage les résultats pour faciliter, dans la zone de réponse, la gestion des données renvoyées. Cet exemple utilise différentes valeurs de champ :

  • La valeur du champ filter va désormais limiter la série temporelle à une seule instance de VM.
  • La valeur du champ fields va désormais spécifier uniquement l'heure et la valeur des mesures.

Celles-ci limitent la quantité de données de séries temporelles renvoyées dans le résultat.

Voici des exemples de paramètres pour timeSeries.list :

  • name : projects/[PROJECT_ID]
  • filter : metric.type = "compute.googleapis.com/instance/cpu/utilization" AND metric.label.instance_name = "[YOUR_INSTANCE_NAME]"
  • interval.start_time : 2018-05-11T00:00:00Z
  • interval.end_time : 2018-05-11T00:20:00Z
  • fields : timeSeries.points.interval.endTime,timeSeries.points.value

Essayer

Avant de cliquer sur le bouton Exécuter, remplacez [PROJECT_ID] et [YOUR_INSTANCE_NAME] par les valeurs définies dans votre projet, puis définissez l'heure de fin sur un moment récent et l'heure de début 20 minutes avant l'heure de fin.

La requête renvoie un résultat semblable aux lignes suivantes :

{
 "timeSeries": [
  {
   "points": [
    {
     "interval": {
      "endTime": "2018-05-T00:19:01Z"
     },
     "value": {
      "doubleValue": 0.06763074536575005
     }
    },
    {
     "interval": {
      "endTime": "2018-05-11T00:18:01Z"
     },
     "value": {
      "doubleValue": 0.06886174467702706
     }
    },
    ...
    {
     "interval": {
      "endTime": "2018-05-11T00:17:01Z"
     },
     "value": {
      "doubleValue": 0.06929610064253211
     }
    }
   ]
  }
 ]
}

C#

public static object ReadTimeSeriesData(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
        View = ListTimeSeriesRequest.Types.TimeSeriesView.Full,
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    foreach (TimeSeries item in response)
    {
        Console.WriteLine(JObject.Parse($"{item}").ToString());
    }
    return 0;
}

Go

// readTimeSeriesValue reads the TimeSeries for the value specified by metric type in a time window from the last 5 minutes.
func readTimeSeriesValue(projectID, metricType string) error {
	ctx := context.Background()
	c, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return err
	}
	startTime := time.Now().UTC().Add(time.Minute * -5).Unix()
	endTime := time.Now().UTC().Unix()

	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: fmt.Sprintf("metric.type=\"%s\"", metricType),
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{Seconds: startTime},
			EndTime:   &timestamp.Timestamp{Seconds: endTime},
		},
	}
	iter := c.ListTimeSeries(ctx, req)

	for {
		resp, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value, %v ", err)
		}
		log.Printf("%+v\n", resp)
	}

	return nil
}

Java

MetricServiceClient metricServiceClient = MetricServiceClient.create();
String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval = TimeInterval.newBuilder()
    .setStartTime(Timestamps.fromMillis(startMillis))
    .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
    .build();

ListTimeSeriesRequest.Builder requestBuilder = ListTimeSeriesRequest.newBuilder()
    .setName(name.toString())
    .setFilter(filter)
    .setInterval(interval);

ListTimeSeriesRequest request = requestBuilder.build();

ListTimeSeriesPagedResponse response = metricServiceClient.listTimeSeries(request);

System.out.println("Got timeseries: ");
for (TimeSeries ts : response.iterateAll()) {
  System.out.println(ts);
}

Node.js

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

/**
 * TODO(developer): Uncomment and edit the following lines of code.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

const request = {
  name: client.projectPath(projectId),
  filter: filter,
  interval: {
    startTime: {
      // Limit results to the last 20 minutes
      seconds: Date.now() / 1000 - 60 * 20,
    },
    endTime: {
      seconds: Date.now() / 1000,
    },
  },
};

// Writes time series data
const [timeSeries] = await client.listTimeSeries(request);
timeSeries.forEach(data => {
  console.log(`${data.metric.labels.instance_name}:`);
  data.points.forEach(point => {
    console.log(JSON.stringify(point.value));
  });
});

PHP

use Google\Cloud\Monitoring\V3\MetricServiceClient;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest_TimeSeriesView;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_simple($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_simple($projectId, $minutesAgo = 20)
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = $metrics->projectName($projectId);
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    // Limit results to the last 20 minutes
    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $view = ListTimeSeriesRequest_TimeSeriesView::FULL;

    $result = $metrics->listTimeSeries(
        $projectName,
        $filter,
        $interval,
        $view);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        $instanceName = $timeSeries->getMetric()->getLabels()['instance_name'];
        printf($instanceName . ':' . PHP_EOL);
        foreach ($timeSeries->getPoints() as $point) {
            printf('  ' . $point->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

client = monitoring_v3.MetricServiceClient()
project_name = client.project_path(project_id)
interval = monitoring_v3.types.TimeInterval()
now = time.time()
interval.end_time.seconds = int(now)
interval.end_time.nanos = int(
    (now - interval.end_time.seconds) * 10**9)
interval.start_time.seconds = int(now - 300)
interval.start_time.nanos = interval.end_time.nanos
results = client.list_time_series(
    project_name,
    'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
    interval,
    monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL)
for result in results:
    print(result)

Ruby

client = Google::Cloud::Monitoring::Metric.new
project_name = Google::Cloud::Monitoring::V3::MetricServiceClient.project_path project_id

interval = Google::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i, nanos: now.usec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 300, nanos: now.usec

results = client.list_time_series(
  project_name,
  'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
  interval,
  Google::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL
)
results.each do |result|
  p result
end

Les données renvoyées incluent 20 points de données dans chaque série temporelle sur une période de 20 minutes, car les métriques Compute Engine sont collectées toutes les minutes. Pour en savoir plus, consultez la section Latence des données de métriques. L'API renvoie les points de données de chaque série temporelle en remontant dans le temps. Aucun dépassement n'a été défini pour ce tri des points.

Consultez la section Résoudre des problèmes d'appels d'API si vous rencontrez des difficultés.

Agréger des données

La méthode timeSeries.list permet d'effectuer des réductions et des agrégations statistiques sur les données de séries temporelles renvoyées. Les sections suivantes fournissent deux exemples de cette opération. Pour découvrir plus d'options, consultez la documentation de cette méthode.

Exemple : Aligner des séries temporelles

Cet exemple permet de réduire les 20 mesures d'utilisation effectuées dans chaque série temporelle à deux mesures seulement. Vous obtenez ainsi l'utilisation moyenne pour les deux périodes de 10 minutes comprises dans l'intervalle total de 20 minutes. Les données de chaque série temporelle sont d'abord alignées sur des périodes de 10 minutes (600 secondes), puis la moyenne des valeurs de chaque période de 10 minutes est calculée.

Cet exemple convertit les 20 mesures de chaque série temporelle en deux mesures par série temporelle. Cette opération présente deux avantages : elle lisse les données et aligne les données de toutes les séries temporelles sur 10 minutes exactement. Les données peuvent ensuite être traitées.

Protocole

Voici des exemples de paramètres pour timeSeries.list :

  • name : projects/[PROJECT_ID]
  • aggregation.alignmentPeriod : 600s
  • aggregation.perSeriesAligner : ALIGN_MEAN
  • filter : metric.type = "compute.googleapis.com/instance/cpu/utilization"
  • interval.start_time : 2018-05-11T00:00:00Z
  • interval.end_time : 2018-05-11T00:20:00Z
  • fields : timeSeries.metric,timeSeries.points

Le filtre pour une seule instance, présenté dans l'exemple précédent, est supprimé : cette requête renvoie beaucoup moins de données. La nécessité de la limiter à une seule instance de VM est donc moindre.

Essayer

Avant de cliquer sur le bouton Exécuter, remplacez [PROJECT_ID] par l'ID de votre projet, puis définissez l'heure de fin sur un moment récent et l'heure de début 20 minutes avant l'heure de fin.

L'exemple de résultat suivant affiche une série temporelle pour chacune des trois instances de VM. Chaque série temporelle comporte deux points de données, l'utilisation moyenne pour les périodes d'alignement de 10 minutes :

{
 "timeSeries": [
  {
   "metric": {
    "labels": {"instance_name": "your-first-instance"},
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2018-05-04T14:00:00.000Z",
      "endTime": "2018-05-04T14:00:00.000Z"
     },
     "value": { "doubleValue": 0.06688481346044381 }
    },
    {
     "interval": {
      "startTime": "2018-05-04T13:50:00.000Z",
      "endTime": "2018-05-04T13:50:00.000Z"
     },
     "value": {"doubleValue": 0.06786652821310177 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-second-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2018-05-04T14:00:00.000Z",
      "endTime": "2018-05-04T14:00:00.000Z"
     },
     "value": { "doubleValue": 0.04144239874207415 }
    },
    {
     "interval": {
      "startTime": "2018-05-04T13:50:00.000Z",
      "endTime": "2018-05-04T13:50:00.000Z"
     },
     "value": { "doubleValue": 0.04045793689050091 }
    }
   ]
  },
  {
   "metric": {
    "labels": { "instance_name": "your-third-instance" },
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2018-05-04T14:00:00.000Z",
      "endTime": "2018-05-04T14:00:00.000Z"
     },
     "value": { "doubleValue": 0.029650046587339607 }
    },
    {
     "interval": {
      "startTime": "2018-05-04T13:50:00.000Z",
      "endTime": "2018-05-04T13:50:00.000Z"
     },
     "value": { "doubleValue": 0.03053874224715402 }
    }
   ]
  }
 ]
}

C#

public static object ReadTimeSeriesAggregate(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine($"{projectId} CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        var labels = item.Metric.Labels;
        Console.WriteLine($"{labels.Values.FirstOrDefault()}");
        if (points.Count > 0)
        {
            Console.WriteLine($"  Now: {points[0].Value.DoubleValue}");
        }
        if (points.Count > 1)
        {
            Console.WriteLine($"  10 min ago: {points[1].Value.DoubleValue}");
        }
    }
    return 0;
}

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
	monitoringpb "google.golang.org/genproto/googleapis/monitoring/v3"
)

// readTimeSeriesAlign reads the last 20 minutes of the given metric and aligns
// everything on 10 minute intervals.
func readTimeSeriesAlign(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %v", err)
	}
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			PerSeriesAligner: monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %v", err)
		}
		fmt.Fprintln(w, resp.GetMetric().GetLabels()["instance_name"])
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		if len(resp.GetPoints()) > 1 {
			fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
		}
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

MetricServiceClient metricServiceClient = MetricServiceClient.create();
String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval = TimeInterval.newBuilder()
    .setStartTime(Timestamps.fromMillis(startMillis))
    .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
    .build();

Aggregation aggregation = Aggregation.newBuilder()
    .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
    .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
    .build();

ListTimeSeriesRequest.Builder requestBuilder = ListTimeSeriesRequest.newBuilder()
    .setName(name.toString())
    .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
    .setInterval(interval)
    .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

ListTimeSeriesPagedResponse response = metricServiceClient.listTimeSeries(request);

System.out.println("Got timeseries: ");
for (TimeSeries ts : response.iterateAll()) {
  System.out.println(ts);
}

Node.js

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

/**
 * TODO(developer): Uncomment and edit the following lines of code.
 */
// const projectId = 'YOUR_PROJECT_ID';

const request = {
  name: client.projectPath(projectId),
  filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
  interval: {
    startTime: {
      // Limit results to the last 20 minutes
      seconds: Date.now() / 1000 - 60 * 20,
    },
    endTime: {
      seconds: Date.now() / 1000,
    },
  },
  // Aggregate results per matching instance
  aggregation: {
    alignmentPeriod: {
      seconds: 600,
    },
    perSeriesAligner: 'ALIGN_MEAN',
  },
};

// Writes time series data
const [timeSeries] = await client.listTimeSeries(request);
console.log('CPU utilization:');
timeSeries.forEach(data => {
  console.log(data.metric.labels.instance_name);
  console.log(`  Now: ${data.points[0].value.doubleValue}`);
  console.log(`  10 min ago: ${data.points[1].value.doubleValue}`);
});

PHP

use Google\Cloud\Monitoring\V3\MetricServiceClient;
use Google\Cloud\Monitoring\V3\Aggregation_Aligner;
use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest_TimeSeriesView;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_align($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_align($projectId, $minutesAgo = 20)
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = $metrics->projectName($projectId);
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setPerSeriesAligner(Aggregation_Aligner::ALIGN_MEAN);

    $view = ListTimeSeriesRequest_TimeSeriesView::FULL;

    $result = $metrics->listTimeSeries(
        $projectName,
        $filter,
        $interval,
        $view,
        ['aggregation' => $aggregation]);

    printf('CPU utilization:' . PHP_EOL);
    foreach ($result->iterateAllElements() as $timeSeries) {
        printf($timeSeries->getMetric()->getLabels()['instance_name'] . PHP_EOL);
        printf('  Now: ');
        printf($timeSeries->getPoints()[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($timeSeries->getPoints()) > 1) {
            printf('  10 minutes ago: ');
            printf($timeSeries->getPoints()[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

client = monitoring_v3.MetricServiceClient()
project_name = client.project_path(project_id)
interval = monitoring_v3.types.TimeInterval()
now = time.time()
interval.end_time.seconds = int(now)
interval.end_time.nanos = int(
    (now - interval.end_time.seconds) * 10**9)
interval.start_time.seconds = int(now - 3600)
interval.start_time.nanos = interval.end_time.nanos
aggregation = monitoring_v3.types.Aggregation()
aggregation.alignment_period.seconds = 300  # 5 minutes
aggregation.per_series_aligner = (
    monitoring_v3.enums.Aggregation.Aligner.ALIGN_MEAN)

results = client.list_time_series(
    project_name,
    'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
    interval,
    monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL,
    aggregation)
for result in results:
    print(result)

Ruby

client = Google::Cloud::Monitoring::Metric.new
project_name = Google::Cloud::Monitoring::V3::MetricServiceClient.project_path project_id

interval = Google::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i, nanos: now.usec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 300, nanos: now.usec

aggregation = Google::Monitoring::V3::Aggregation.new(
  alignment_period:   { seconds: 300 },
  per_series_aligner: Google::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN
)

results = client.list_time_series(
  project_name,
  'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
  interval,
  Google::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL,
  aggregation: aggregation
)
results.each do |result|
  p result
end

Consultez la section Résoudre des problèmes d'appels d'API si vous rencontrez des difficultés.

Exemple : Réduire toutes les séries temporelles

La section qui suit reprend l'exemple précédent, et combine les séries temporelles alignées des trois instances de VM en une seule série temporelle affichant l'utilisation moyenne de toutes les instances.

Protocole

Voici des exemples de paramètres pour timeSeries.list. La seule différence avec l'exemple précédent réside dans l'inclusion de aggregation.crossSeriesReducer :

  • name : projects/[PROJECT_ID]
  • aggregation.alignmentPeriod : 600s
  • aggregation.crossSeriesReducer : REDUCE_MEAN
  • aggregation.perSeriesAligner : ALIGN_MEAN
  • filter : metric.type = "compute.googleapis.com/instance/cpu/utilization"
  • interval.start_time : 2018-05-11T00:00:00Z
  • interval.end_time : 2018-05-11T00:20:00Z
  • fields : timeSeries.metric,timeSeries.points

Essayer

Avant de cliquer sur le bouton Exécuter, remplacez [PROJECT_ID] par l'ID de votre projet, puis définissez l'heure de fin sur un moment récent et l'heure de début 20 minutes avant l'heure de fin.

Ainsi, le résultat ci-dessous comporte une seule série temporelle et uniquement deux points de données. Chaque point représente la moyenne d'utilisation entre les trois instances de VM au cours de la période :

{
 "timeSeries": [
  {
   "metric": {
    "type": "compute.googleapis.com/instance/cpu/utilization"
   },
   "points": [
    {
     "interval": {
      "startTime": "2018-05-04T14:00:00.000Z",
      "endTime": "2018-05-04T14:00:00.000Z"
     },
     "value": {
      "doubleValue": 0.045992419596619184
     }
    },
    {
     "interval": {
      "startTime": "2018-05-04T13:50:00.000Z",
      "endTime": "2018-05-04T13:50:00.000Z"
     },
     "value": {
      "doubleValue": 0.04628773578358556
     }
    }
   ]
  }
 ]
}

C#

public static object ReadTimeSeriesReduce(string projectId,
    string metricType = "compute.googleapis.com/instance/cpu/utilization")
{
    // Create client.
    MetricServiceClient metricServiceClient = MetricServiceClient.Create();
    // Initialize request argument(s).
    string filter = $"metric.type=\"{metricType}\"";
    ListTimeSeriesRequest request = new ListTimeSeriesRequest
    {
        ProjectName = new ProjectName(projectId),
        Filter = filter,
        Interval = new TimeInterval(),
    };
    // Create timestamp for current time formatted in seconds.
    long timeStamp = (long)(DateTime.UtcNow - s_unixEpoch).TotalSeconds;
    Timestamp startTimeStamp = new Timestamp();
    // Set startTime to limit results to the last 20 minutes.
    startTimeStamp.Seconds = timeStamp - (60 * 20);
    Timestamp endTimeStamp = new Timestamp();
    // Set endTime to current time.
    endTimeStamp.Seconds = timeStamp;
    TimeInterval interval = new TimeInterval();
    interval.StartTime = startTimeStamp;
    interval.EndTime = endTimeStamp;
    request.Interval = interval;
    // Aggregate results per matching instance.
    Aggregation aggregation = new Aggregation();
    Duration alignmentPeriod = new Duration();
    alignmentPeriod.Seconds = 600;
    aggregation.AlignmentPeriod = alignmentPeriod;
    aggregation.CrossSeriesReducer = Aggregation.Types.Reducer.ReduceMean;
    aggregation.PerSeriesAligner = Aggregation.Types.Aligner.AlignMean;
    // Add the aggregation to the request.
    request.Aggregation = aggregation;
    // Make the request.
    PagedEnumerable<ListTimeSeriesResponse, TimeSeries> response =
        metricServiceClient.ListTimeSeries(request);
    // Iterate over all response items, lazily performing RPCs as required.
    Console.WriteLine("CPU utilization:");
    foreach (var item in response)
    {
        var points = item.Points;
        Console.WriteLine("Average CPU utilization across all GCE instances:");
        Console.WriteLine($"  Last 10 min: {points[0].Value.DoubleValue}");
        Console.WriteLine($"  Last 10-20 min ago: {points[1].Value.DoubleValue}");
    }
    return 0;
}

Go

import (
	"context"
	"fmt"
	"io"
	"time"

	monitoring "cloud.google.com/go/monitoring/apiv3"
	"github.com/golang/protobuf/ptypes/duration"
	"github.com/golang/protobuf/ptypes/timestamp"
	"google.golang.org/api/iterator"
	monitoringpb "google.golang.org/genproto/googleapis/monitoring/v3"
)

// readTimeSeriesReduce reads the last 20 minutes of the given metric, aligns
// everything on 10 minute intervals, and combines values from different
// instances.
func readTimeSeriesReduce(w io.Writer, projectID string) error {
	ctx := context.Background()
	client, err := monitoring.NewMetricClient(ctx)
	if err != nil {
		return fmt.Errorf("NewMetricClient: %v", err)
	}
	startTime := time.Now().UTC().Add(time.Minute * -20)
	endTime := time.Now().UTC()
	req := &monitoringpb.ListTimeSeriesRequest{
		Name:   "projects/" + projectID,
		Filter: `metric.type="compute.googleapis.com/instance/cpu/utilization"`,
		Interval: &monitoringpb.TimeInterval{
			StartTime: &timestamp.Timestamp{
				Seconds: startTime.Unix(),
			},
			EndTime: &timestamp.Timestamp{
				Seconds: endTime.Unix(),
			},
		},
		Aggregation: &monitoringpb.Aggregation{
			CrossSeriesReducer: monitoringpb.Aggregation_REDUCE_MEAN,
			PerSeriesAligner:   monitoringpb.Aggregation_ALIGN_MEAN,
			AlignmentPeriod: &duration.Duration{
				Seconds: 600,
			},
		},
	}
	it := client.ListTimeSeries(ctx, req)
	for {
		resp, err := it.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return fmt.Errorf("could not read time series value: %v", err)
		}
		fmt.Fprintln(w, "Average CPU utilization across all GCE instances:")
		fmt.Fprintf(w, "\tNow: %.4f\n", resp.GetPoints()[0].GetValue().GetDoubleValue())
		fmt.Fprintf(w, "\t10 minutes ago: %.4f\n", resp.GetPoints()[1].GetValue().GetDoubleValue())
	}
	fmt.Fprintln(w, "Done")
	return nil
}

Java

MetricServiceClient metricServiceClient = MetricServiceClient.create();
String projectId = System.getProperty("projectId");
ProjectName name = ProjectName.of(projectId);

// Restrict time to last 20 minutes
long startMillis = System.currentTimeMillis() - ((60 * 20) * 1000);
TimeInterval interval = TimeInterval.newBuilder()
    .setStartTime(Timestamps.fromMillis(startMillis))
    .setEndTime(Timestamps.fromMillis(System.currentTimeMillis()))
    .build();

Aggregation aggregation = Aggregation.newBuilder()
    .setAlignmentPeriod(Duration.newBuilder().setSeconds(600).build())
    .setPerSeriesAligner(Aggregation.Aligner.ALIGN_MEAN)
    .setCrossSeriesReducer(Aggregation.Reducer.REDUCE_MEAN)
    .build();

ListTimeSeriesRequest.Builder requestBuilder = ListTimeSeriesRequest.newBuilder()
    .setName(name.toString())
    .setFilter("metric.type=\"compute.googleapis.com/instance/cpu/utilization\"")
    .setInterval(interval)
    .setAggregation(aggregation);

ListTimeSeriesRequest request = requestBuilder.build();

ListTimeSeriesPagedResponse response = metricServiceClient.listTimeSeries(request);

System.out.println("Got timeseries: ");
for (TimeSeries ts : response.iterateAll()) {
  System.out.println(ts);
}

Node.js

// Imports the Google Cloud client library
const monitoring = require('@google-cloud/monitoring');

// Creates a client
const client = new monitoring.MetricServiceClient();

/**
 * TODO(developer): Uncomment and edit the following lines of code.
 */
// const projectId = 'YOUR_PROJECT_ID';

const request = {
  name: client.projectPath(projectId),
  filter: 'metric.type="compute.googleapis.com/instance/cpu/utilization"',
  interval: {
    startTime: {
      // Limit results to the last 20 minutes
      seconds: Date.now() / 1000 - 60 * 20,
    },
    endTime: {
      seconds: Date.now() / 1000,
    },
  },
  // Aggregate results per matching instance
  aggregation: {
    alignmentPeriod: {
      seconds: 600,
    },
    crossSeriesReducer: 'REDUCE_MEAN',
    perSeriesAligner: 'ALIGN_MEAN',
  },
};

// Writes time series data
const [result] = await client.listTimeSeries(request);
if (result.length === 0) {
  console.log('No data');
  return;
}
const reductions = result[0].points;

console.log('Average CPU utilization across all GCE instances:');
console.log(`  Last 10 min: ${reductions[0].value.doubleValue}`);
console.log(`  10-20 min ago: ${reductions[0].value.doubleValue}`);

PHP

use Google\Cloud\Monitoring\V3\MetricServiceClient;
use Google\Cloud\Monitoring\V3\Aggregation_Aligner;
use Google\Cloud\Monitoring\V3\Aggregation_Reducer;
use Google\Cloud\Monitoring\V3\Aggregation;
use Google\Cloud\Monitoring\V3\TimeInterval;
use Google\Cloud\Monitoring\V3\ListTimeSeriesRequest_TimeSeriesView;
use Google\Protobuf\Duration;
use Google\Protobuf\Timestamp;

/**
 * Example:
 * ```
 * read_timeseries_reduce($projectId);
 * ```
 *
 * @param string $projectId Your project ID
 */
function read_timeseries_reduce($projectId, $minutesAgo = 20)
{
    $metrics = new MetricServiceClient([
        'projectId' => $projectId,
    ]);

    $projectName = $metrics->projectName($projectId);
    $filter = 'metric.type="compute.googleapis.com/instance/cpu/utilization"';

    $startTime = new Timestamp();
    $startTime->setSeconds(time() - (60 * $minutesAgo));
    $endTime = new Timestamp();
    $endTime->setSeconds(time());

    $interval = new TimeInterval();
    $interval->setStartTime($startTime);
    $interval->setEndTime($endTime);

    $alignmentPeriod = new Duration();
    $alignmentPeriod->setSeconds(600);
    $aggregation = new Aggregation();
    $aggregation->setAlignmentPeriod($alignmentPeriod);
    $aggregation->setCrossSeriesReducer(Aggregation_Reducer::REDUCE_MEAN);
    $aggregation->setPerSeriesAligner(Aggregation_Aligner::ALIGN_MEAN);

    $view = ListTimeSeriesRequest_TimeSeriesView::FULL;

    $result = $metrics->listTimeSeries(
        $projectName,
        $filter,
        $interval,
        $view,
        ['aggregation' => $aggregation]);

    printf('Average CPU utilization across all GCE instances:' . PHP_EOL);
    if ($timeSeries = $result->iterateAllElements()->current()) {
        $reductions = $timeSeries->getPoints();
        printf('  Last 10 minutes: ');
        printf($reductions[0]->getValue()->getDoubleValue() . PHP_EOL);
        if (count($reductions) > 1) {
            printf('  10-20 minutes ago: ');
            printf($reductions[1]->getValue()->getDoubleValue() . PHP_EOL);
        }
    }
}

Python

client = monitoring_v3.MetricServiceClient()
project_name = client.project_path(project_id)
interval = monitoring_v3.types.TimeInterval()
now = time.time()
interval.end_time.seconds = int(now)
interval.end_time.nanos = int(
    (now - interval.end_time.seconds) * 10**9)
interval.start_time.seconds = int(now - 3600)
interval.start_time.nanos = interval.end_time.nanos
aggregation = monitoring_v3.types.Aggregation()
aggregation.alignment_period.seconds = 300  # 5 minutes
aggregation.per_series_aligner = (
    monitoring_v3.enums.Aggregation.Aligner.ALIGN_MEAN)
aggregation.cross_series_reducer = (
    monitoring_v3.enums.Aggregation.Reducer.REDUCE_MEAN)
aggregation.group_by_fields.append('resource.zone')

results = client.list_time_series(
    project_name,
    'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
    interval,
    monitoring_v3.enums.ListTimeSeriesRequest.TimeSeriesView.FULL,
    aggregation)
for result in results:
    print(result)

Ruby

client = Google::Cloud::Monitoring::Metric.new
project_name = Google::Cloud::Monitoring::V3::MetricServiceClient.project_path project_id

interval = Google::Monitoring::V3::TimeInterval.new
now = Time.now
interval.end_time = Google::Protobuf::Timestamp.new seconds: now.to_i, nanos: now.usec
interval.start_time = Google::Protobuf::Timestamp.new seconds: now.to_i - 300, nanos: now.usec

aggregation = Google::Monitoring::V3::Aggregation.new(
  alignment_period:     { seconds: 300 },
  per_series_aligner:   Google::Monitoring::V3::Aggregation::Aligner::ALIGN_MEAN,
  cross_series_reducer: Google::Monitoring::V3::Aggregation::Reducer::REDUCE_MEAN,
  group_by_fields:      ["resource.zone"]
)

results = client.list_time_series(
  project_name,
  'metric.type = "compute.googleapis.com/instance/cpu/utilization"',
  interval,
  Google::Monitoring::V3::ListTimeSeriesRequest::TimeSeriesView::FULL,
  aggregation: aggregation
)
results.each do |result|
  p result
end

Consultez la section Dépanner l'API Monitoring si vous rencontrez des difficultés.

Cette page vous a-t-elle été utile ? Évaluez-la :

Envoyer des commentaires concernant…

Stackdriver Monitoring
Besoin d'aide ? Consultez notre page d'assistance.