Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.
Vai a

Che cos'è l'intelligenza artificiale (AI)?

L'intelligenza artificiale (AI) è un insieme di tecnologie che consentono ai computer di eseguire una serie di funzioni avanzate, tra cui la capacità di vedere, comprendere e tradurre il linguaggio parlato e scritto, analizzare i dati, dare suggerimenti e molto altro. 

L'AI è la spina dorsale dell'innovazione nel computing moderno, in quanto permette di generare valore per privati e attività grazie all'automatizzazione dei processi e alla fornitura di insight in grandi set di dati. Sta emergendo un'ampia varietà di casi d'uso di AI, dai robot in grado di spostarsi autonomamente in un magazzino ai sistemi di cybersicurezza che analizzano e si migliorano continuamente, agli assistenti virtuali in grado di comprendere l'opinione della gente e agire in base a queste informazioni. Il machine learning (ML) è un sottoinsieme particolarmente importante dell'AI, in cui le macchine creano modelli basati sui dati di addestramento, di solito per generare previsioni più accurate. 

Per ulteriori informazioni sul machine learning, scopri i prodotti AI di Google Cloud, tra cui Vertex AI, la piattaforma unificata di Google per l'addestramento, il deployment e la gestione dei modelli di machine learning; le API come Speech-to-Text; il CCAI per l'automazione di call center e agenti virtuali, e soluzioni di settore per sanità, concessione di crediti e altri verticali.

Definizione di intelligenza artificiale

L'intelligenza artificiale è un settore scientifico che riguarda la creazione di computer e macchine in grado di ragionare, imparare e agire in un modo che normalmente richiede l'intelligenza umana o prevede l'analisi di dati la cui scala supera ciò che l'uomo è in grado di analizzare. 

L'AI è un campo ampio che comprende molte materie diverse, tra cui informatica, analisi dei dati e statistiche, ingegneria hardware e software, linguistica, neuroscienza e persino filosofia e psicologia. 

A livello operativo per l'uso aziendale, l'AI è un insieme di tecnologie basate principalmente sul machine learning e sul deep learning, utilizzate per l'analisi dei dati, le diverse previsioni, la categorizzazione degli oggetti, l'elaborazione del linguaggio naturale, i suggerimenti, il recupero intelligente dei dati e molto altro.

Tipi di intelligenza artificiale

L'intelligenza artificiale può essere organizzata in diversi modi, a seconda delle fasi di sviluppo o delle azioni in esecuzione. 

Ad esempio, quattro fasi dello sviluppo dell'AI sono comunemente riconosciute.

  1. Macchine reattive: AI limitata che reagisce solo a diversi tipi di stimoli in base a regole preprogrammate. Non utilizza la memoria e quindi non può apprendere con nuovi dati. Deep Blue di IBM, che nel 1997 ha battuto il campione degli scacchi Garry Kasparov, rappresentava un esempio di macchina reattiva.
  2. Memoria limitata: la maggior parte dell'AI moderna è considerata a memoria limitata. Può utilizzare la memoria per migliorare nel tempo grazie all'addestramento basato sui nuovi dati, solitamente attraverso una rete neurale artificiale o un altro modello di addestramento. Il deep learning, un sottoinsieme di machine learning, è considerato un'intelligenza artificiale con memoria limitata.
  3. Teoria della mente: l'AI con teoria della mente non esiste al momento, ma sono in corso ricerche sulle sue possibilità. Descrive l'AI in grado di emulare la mente umana e ha capacità decisionali pari a quelle di una persona, ad esempio sa riconoscere e ricordare emozioni e sa reagire in situazioni sociali come farebbe una persona. 
  4. Consapevolezza di sé: un livello sopra l'AI con teoria della mente, l'AI basata sul concetto di consapevolezza di sé descrive una macchina mitica che è consapevole della propria esistenza e ha le capacità intellettuali ed emotive di un essere umano. Come per l'AI con teoria della mente, l'AI basata sul concetto di consapevolezza di sé al momento non esiste.

Un metodo più utile per categorizzare in modo ampio i tipi di intelligenza artificiale è suddividerli per ciò che è in grado di fare la macchina. Tutto quello che chiamiamo intelligenza artificiale attualmente rientra nella cosiddetta intelligenza artificiale "limitata", in quanto è in grado di eseguire solamente insiemi di azioni limitati, a seconda cioè della programmazione e dell'addestramento. Ad esempio, un algoritmo AI utilizzato per la classificazione degli oggetti non sarà in grado di eseguire l'elaborazione del linguaggio naturale. La Ricerca Google è una forma di AI limitata, così come l'analisi predittiva o gli assistenti virtuali.

L'intelligenza artificiale generale (AGI) è la capacità di una macchina di "sentire, pensare e agire" proprio come un essere umano. L'AGI non esiste attualmente. Il livello successivo sarebbe la superintelligenza artificiale (ASI), grazie alla quale la macchina sarebbe in grado di funzionare in maniera totalmente superiore a un essere umano. 

Modelli di addestramento dell'intelligenza artificiale

Quando le aziende parlano di AI, spesso parlano di "dati di addestramento". Ma cosa significa? Ricorda che l'intelligenza artificiale a memoria limitata è l'AI che migliora nel tempo grazie all'addestramento con nuovi dati. Il machine learning è un sottoinsieme di intelligenza artificiale che utilizza gli algoritmi per addestrare i dati al fine di ottenere risultati.

Nei casi più ampi, spesso vengono usati tre tipi di modelli di apprendimento nel machine learning:

L'apprendimento supervisionato è un modello di machine learning che mappa un input specifico a un output utilizzando dati di addestramento etichettati (dati strutturati). In parole semplici, per addestrare l'algoritmo a riconoscere le immagini dei gatti, bisogna alimentarlo con immagini etichettate come gatti.

L'apprendimento non supervisionato è un modello di machine learning che apprende pattern in base a dati senza etichetta (dati non strutturati). A differenza dell'apprendimento supervisionato, il risultato finale non è noto in anticipo. Al contrario, l'algoritmo apprende dai dati, classificandoli in gruppi in base agli attributi. Ad esempio, l'apprendimento non supervisionato è utile per la corrispondenza dei pattern e la modellazione descrittiva. 

Oltre all'apprendimento supervisionato e non supervisionato, viene utilizzato spesso un approccio misto chiamato apprendimento semi-supervisionato in cui sono etichettati solo alcuni dati. Nell'apprendimento semi-supervisionato è noto un risultato finale, ma l'algoritmo deve capire come organizzare e strutturare i dati per raggiungere i risultati desiderati.

L'apprendimento per rinforzo è un modello di machine learning che può essere ampiamente descritto come "impara facendo". Un "agente" impara a eseguire una determinata attività per tentativi ed errori (un ciclo di feedback) finché le sue prestazioni non rientrano in un intervallo desiderato. L'agente riceve un premio quando esegue correttamente l'attività e una penalità quando le prestazioni sono inadeguate. Un esempio di apprendimento per rinforzo è l'insegnamento di come prendere una palla a una mano robotica. 

Tipi comuni di reti neurali artificiali

Un tipo comune di modello di addestramento in AI è una rete neurale artificiale, un modello vagamente basato sulla mente umana. 

Una rete neurale è un sistema di neuroni artificiali, a volte chiamati percettroni, ovvero dei nodi computazionali utilizzati per classificare e analizzare i dati. I dati vengono inseriti nel primo livello di una rete neurale in cui ogni percettrone prende una decisione e poi trasmette le informazioni a più nodi nel livello successivo. L'addestramento di modelli con più di tre livelli viene definito "rete neurale profonda" o "deep learning". Alcune reti neurali moderne hanno centinaia o migliaia di livelli. L'output dei percettroni finali esegue l'attività impostata sulla rete neurale, ad esempio classificare un oggetto o trovare pattern nei dati. 

Alcuni dei tipi più comuni di reti neurali artificiali che potresti riscontrare sono:

Le reti neurali feed-forward (FF) sono una delle forme più vecchie di reti neurali, in cui i dati passano in un solo verso tra i livelli di neuroni artificiali fino a raggiungere l'output. Al giorno d'oggi, la maggior parte delle reti neurali feed-forward è considerata una rete "feed-forward profonda" con più livelli (e più livelli "nascosti"). Le reti neurali feed-forward sono in genere abbinate a un algoritmo di correzione degli errori detto di "retropropagazione", che, in termini semplici, parte dal risultato ottenuto della rete neurale e ritorna all'inizio, Individuando gli errori per migliorare la precisione della rete neurale. Molte reti neurali semplici ma potenti sono di tipo feed-forward profonda.

Le reti neurali ricorrenti (RNN) si differenziano dalle reti neurali feed-forward in quanto di solito utilizzano dati di serie temporali o che prevedono sequenze. A differenza delle reti neurali feed-forward, che utilizzano i pesi in ciascun nodo della rete, le reti neurali ricorrenti hanno "memoria" di ciò che è accaduto nel livello precedente, in base all'output del livello corrente. Ad esempio, quando si esegue l'elaborazione del linguaggio naturale, le RNN possono "tenere presente" altre parole utilizzate in una frase. Le RNN vengono spesso utilizzate per il riconoscimento vocale, la traduzione e la creazione di didascalie per le immagini. 

La memoria a lungo termine e a breve termine (LSTM) è una forma avanzata di RNN che può utilizzare la memoria per "ricordare" ciò che è accaduto nei livelli precedenti. La differenza tra RNN e LTSM è che la LTSM è in grado di ricordare cosa è successo diversi livelli prima grazie all'uso di "cellule di memoria". La LSTM viene spesso utilizzata per il riconoscimento vocale e le previsioni. 

Le reti neurali convoluzionali (CNN) includono alcune delle reti neurali più comuni nell'intelligenza artificiale moderna. Più comunemente utilizzate nel riconoscimento delle immagini, le CNN utilizzano diversi livelli distinti (un livello convoluzionale, poi un livello di pool) che filtrano parti diverse di un'immagine prima di ricomporla (nel livello completamente connesso). I primi livelli convoluzionali potrebbero cercare semplici caratteristiche di un'immagine, come colori e bordi, prima di cercare caratteristiche più complesse in livelli successivi.

Le reti generative avversarie (GAN) coinvolgono due reti neurali in competizione tra loro in un gioco il cui fine ultime è migliorare la precisione dell'output. Una rete (il generatore) crea esempi che l'altra rete (il discriminatore) tenta di dimostrare che siano veri o falsi. Le GAN sono state utilizzate per creare immagini realistiche e persino opere d'arte.

Vantaggi dell'AI

Automazione

L'AI può automatizzare i flussi di lavoro e i processi oppure lavorare in modo autonomo e indipendente da un team umano. Ad esempio, l'AI può contribuire ad automatizzare gli aspetti della cybersicurezza monitorando e analizzando continuamente il traffico di rete. Allo stesso modo, una fabbrica smart può avere decine di diversi tipi di AI in uso, ad esempio i robot che utilizzano la visione artificiale per muoversi all'interno della fabbrica o per ispezionare i prodotti e rilevare eventuali difetti, creare gemelli digitali o usare analisi in tempo reale per misurare l'efficienza e la produttività.

Riduzione degli errori umani

L'AI può eliminare gli errori manuali relativi all'elaborazione dei dati, all'analisi, all'assemblaggio nel settore manifatturiero e ad altre attività attraverso l'automazione e gli algoritmi che eseguono le stesse procedure ripetutamente.

Eliminazione delle attività ripetitive

L'AI può essere utilizzata per svolgere attività ripetitive, lasciando il capitale umano libero di lavorare su problemi di impatto maggiore. L'AI può essere utilizzata per automatizzare i processi, ad esempio per verificare i documenti, trascrivere le telefonate o rispondere a semplici domande del cliente come: "A che ora chiudete?". I robot vengono spesso utilizzati per eseguire attività "noiose, brutte o pericolose", al posto delle persone. 

Velocità e precisione

L'AI può elaborare più informazioni rispetto a una persona ed è in grado di trovare pattern e scoprire relazioni nei dati che un essere umano potrebbe non notare.

Disponibilità infinita

L'AI non è limitata dall'ora del giorno, dalla necessità di fare una pausa o da altre incombenze prettamente umane. Quando vengono eseguiti nel cloud, l'AI e il machine learning possono essere "sempre attivi", lavorando in modo continuativo alle attività assegnate. 

Accelerazione di ricerca e sviluppo

La capacità di analizzare grandi quantità di dati rapidamente può portare a innovazioni rivoluzionarie nella ricerca e nello sviluppo. Ad esempio, l'AI è stata utilizzata per la modellazione predittiva di potenziali nuovi trattamenti farmaceutici o per quantificare il genoma umano. 

Risolvi le tue sfide aziendali con Google Cloud

I nuovi clienti ricevono 300 $ di crediti gratuiti da spendere su Google Cloud.
Inizia
Parla con un esperto del team di vendita di Google Cloud per discutere della tua sfida unica in modo più dettagliato.
Contattaci

Applicazioni e casi d'uso per l'intelligenza artificiale

Riconoscimento vocale

Converti automaticamente la voce in testo scritto.

Riconoscimento di immagini

Identifica e classifica i vari aspetti di un'immagine.

Traduzione

Traduci parole scritte o parlate da una lingua all'altra.

Modellazione predittiva

Visualizza i dati per prevedere risultati specifici con livelli elevati di granularità.

Analisi di dati

Trova pattern e relazioni nei dati per la business intelligence.

Cybersicurezza

Scansiona in autonomia le reti per rilevare attacchi informatici e minacce.

Google offre una serie di sofisticati prodotti, soluzioni e applicazioni di intelligenza artificiale su una piattaforma cloud affidabile che consente alle aziende di creare e implementare facilmente algoritmi e modelli AI.

Utilizzando prodotti come Vertex AI, CCAI, DocAI o API basate su AI, le organizzazioni possono comprendere tutti i dati che producono, raccolgono o analizzano in altro modo, indipendentemente dal formato, per prendere decisioni aziendali strategiche.