Lecturas

En esta página, se describe cómo realizar lecturas en Cloud Spanner cuando no se trata de transacciones de solo lectura y de lectura y escritura. Esto significa que, si se aplica alguna de las siguientes opciones, deberías leer la página sobre transacciones en su lugar:

  • Si necesitas escribir, en función del valor de una o más lecturas, debes ejecutar la lectura como parte de una transacción de lectura y escritura. Obtén más información sobre las transacciones de lectura y escritura.

  • Si realizas varias llamadas de lectura que requieren una vista coherente de tus datos, debes ejecutar las lecturas como parte de una transacción de solo lectura. Obtén más información sobre las transacciones de solo lectura.

Si necesitas realizar una sola llamada de lectura o leer datos en paralelo, y no necesitas escribir, sigue leyendo.

Tipos de lecturas

Cloud Spanner te permite determinar qué tan actuales deben ser los datos para leerlos. Para esto, ofrece dos tipos de lecturas:

  • Una lectura sólida es una lectura en una marca de tiempo actual y se garantiza que se ven todos los datos que se hayan confirmado hasta el inicio de esta lectura. Cloud Spanner usa lecturas sólidas de forma predeterminada para entregar solicitudes de lectura.
  • Una lectura inactiva se lee en una marca de tiempo anterior. Si tu aplicación es sensible a la latencia, pero tolera los datos obsoletos, las lecturas inactivas pueden proporcionar beneficios de rendimiento.

Elegir los límites de la marca de tiempo

Para elegir qué tipo de lectura quieres, configura un límite de marca de tiempo en la solicitud de lectura. Usa las siguientes prácticas recomendadas cuando elijas un límite de marca de tiempo:

  • Elige lecturas sólidas siempre que sea posible. Son el límite predeterminado de marca de tiempo de las lecturas de Cloud Spanner, incluidas las transacciones de solo lectura. Se garantiza que las lecturas sólidas observan los efectos de todas las transacciones que se confirmaron antes del inicio de la operación, sin importar de qué réplica reciba la lectura. Debido a esto, las lecturas sólidas hacen que el código de la aplicación sea más simple y que las aplicaciones sean más confiables. Obtén más información sobre las propiedades de coherencia de Cloud Spanner en la página sobre TrueTime y la coherencia externa.

  • Si la latencia vuelve inviables las lecturas sólidas en algunas situaciones, usa lecturas inactivas (de inactividad limitada o exacta) para mejorar el rendimiento en lugares donde no necesitas que las lecturas sean lo más recientes posible. Como se describe en la sección Solo lectura de Replicación, 15 segundos es un valor de inactividad razonable para obtener un buen rendimiento.

Métodos de lectura única

Cloud Spanner admite métodos de lectura única (es decir, una lectura fuera del contexto de una transacción) en una base de datos para realizar las siguientes acciones:

  • Ejecutar la lectura como una instrucción de consulta de SQL o usar la API de lectura de Cloud Spanner
  • Realizar una lectura sólida desde una o varias filas de una tabla
  • Realizar una lectura inactiva desde una o varias filas en una tabla
  • Leer desde una o varias filas en un índice secundario

En las siguientes secciones, se describe cómo usar los métodos de lectura mediante las bibliotecas cliente de Cloud de la API de Cloud Spanner.

Ejecutar una consulta

A continuación, se muestra cómo ejecutar una instrucción de consulta de SQL en una base de datos.

C++

Usa ExecuteQuery() para ejecutar una instrucción de consulta de SQL en una base de datos.

void QueryData(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  spanner::SqlStatement select("SELECT SingerId, LastName FROM Singers");
  using RowType = std::tuple<std::int64_t, std::string>;
  auto rows = client.ExecuteQuery(std::move(select));
  for (auto const& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::runtime_error(row.status().message());
    std::cout << "SingerId: " << std::get<0>(*row) << "\t";
    std::cout << "LastName: " << std::get<1>(*row) << "\n";
  }

  std::cout << "Query completed for [spanner_query_data]\n";
}

C#

Usa ExecuteReaderAsync() para consultar la base de datos.

string connectionString =
$"Data Source=projects/{projectId}/instances/"
+ $"{instanceId}/databases/{databaseId}";
// Create connection to Cloud Spanner.
using (var connection = new SpannerConnection(connectionString))
{
    var cmd = connection.CreateSelectCommand(
        "SELECT SingerId, AlbumId, AlbumTitle FROM Albums");
    using (var reader = await cmd.ExecuteReaderAsync())
    {
        while (await reader.ReadAsync())
        {
            Console.WriteLine("SingerId : "
                + reader.GetFieldValue<string>("SingerId")
                + " AlbumId : "
                + reader.GetFieldValue<string>("AlbumId")
                + " AlbumTitle : "
                + reader.GetFieldValue<string>("AlbumTitle"));
        }
    }
}

Go

Usa Client.Single().Query para consultar la base de datos.


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func query(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := client.Single().Query(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

Java

Usa ReadContext.executeQuery para consultar la base de datos.

static void query(DatabaseClient dbClient) {
  try (ResultSet resultSet =
      dbClient
          .singleUse() // Execute a single read or query against Cloud Spanner.
          .executeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s\n", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

Node.js

Usa Database.run para consultar la base de datos.

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

const query = {
  sql: 'SELECT SingerId, AlbumId, AlbumTitle FROM Albums',
};

// Queries rows from the Albums table
try {
  const [rows] = await database.run(query);

  rows.forEach(row => {
    const json = row.toJSON();
    console.log(
      `SingerId: ${json.SingerId}, AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`
    );
  });
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  await database.close();
}

PHP

Usa Database::execute para consultar la base de datos.

use Google\Cloud\Spanner\SpannerClient;

/**
 * Queries sample data from the database using SQL.
 * Example:
 * ```
 * query_data($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function query_data($instanceId, $databaseId)
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $results = $database->execute(
        'SELECT SingerId, AlbumId, AlbumTitle FROM Albums'
    );

    foreach ($results as $row) {
        printf('SingerId: %s, AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['SingerId'], $row['AlbumId'], $row['AlbumTitle']);
    }
}

Python

Usa Database.execute_sql para consultar la base de datos.

def query_data(instance_id, database_id):
    """Queries sample data from the database using SQL."""
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot() as snapshot:
        results = snapshot.execute_sql(
            "SELECT SingerId, AlbumId, AlbumTitle FROM Albums"
        )

        for row in results:
            print(u"SingerId: {}, AlbumId: {}, AlbumTitle: {}".format(*row))

Ruby

Usa Client#execute para consultar la base de datos.

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

client.execute("SELECT SingerId, AlbumId, AlbumTitle FROM Albums").rows.each do |row|
  puts "#{row[:SingerId]} #{row[:AlbumId]} #{row[:AlbumTitle]}"
end

Consulta Expresiones, funciones y operadores y la página sobre la sintaxis de consulta de SQL cuando crees una instrucción de SQL.

Realizar una lectura sólida

A continuación, se muestra cómo realizar una lectura sólida de cero o más filas en una base de datos.

C++

El código de lectura de datos es el mismo que el ejemplo anterior para consultar Cloud Spanner mediante la ejecución de una consulta de SQL.

void QueryData(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  spanner::SqlStatement select("SELECT SingerId, LastName FROM Singers");
  using RowType = std::tuple<std::int64_t, std::string>;
  auto rows = client.ExecuteQuery(std::move(select));
  for (auto const& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::runtime_error(row.status().message());
    std::cout << "SingerId: " << std::get<0>(*row) << "\t";
    std::cout << "LastName: " << std::get<1>(*row) << "\n";
  }

  std::cout << "Query completed for [spanner_query_data]\n";
}

C#

El código de lectura de datos es el mismo que el ejemplo anterior para consultar Cloud Spanner mediante la ejecución de una consulta de SQL.

string connectionString =
$"Data Source=projects/{projectId}/instances/"
+ $"{instanceId}/databases/{databaseId}";
// Create connection to Cloud Spanner.
using (var connection = new SpannerConnection(connectionString))
{
    var cmd = connection.CreateSelectCommand(
        "SELECT SingerId, AlbumId, AlbumTitle FROM Albums");
    using (var reader = await cmd.ExecuteReaderAsync())
    {
        while (await reader.ReadAsync())
        {
            Console.WriteLine("SingerId : "
                + reader.GetFieldValue<string>("SingerId")
                + " AlbumId : "
                + reader.GetFieldValue<string>("AlbumId")
                + " AlbumTitle : "
                + reader.GetFieldValue<string>("AlbumTitle"));
        }
    }
}

Go

Usa Client.Single().Read para leer filas de la base de datos.


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func read(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	iter := client.Single().Read(ctx, "Albums", spanner.AllKeys(),
		[]string{"SingerId", "AlbumId", "AlbumTitle"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

En el ejemplo, se usa AllKeys para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Java

Usa ReadContext.read para leer filas de la base de datos.

static void read(DatabaseClient dbClient) {
  try (ResultSet resultSet =
      dbClient
          .singleUse()
          .read(
              "Albums",
              KeySet.all(), // Read all rows in a table.
              Arrays.asList("SingerId", "AlbumId", "AlbumTitle"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s\n", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

En el ejemplo, se usa KeySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Node.js

Usa Table.read para leer filas de la base de datos.

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

// Reads rows from the Albums table
const albumsTable = database.table('Albums');

const query = {
  columns: ['SingerId', 'AlbumId', 'AlbumTitle'],
  keySet: {
    all: true,
  },
};

try {
  const [rows] = await albumsTable.read(query);

  rows.forEach(row => {
    const json = row.toJSON();
    console.log(
      `SingerId: ${json.SingerId}, AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`
    );
  });
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  await database.close();
}

En el ejemplo, se usa keySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

PHP

Usa Database::read para leer filas de la base de datos.

use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads sample data from the database.
 * Example:
 * ```
 * read_data($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_data($instanceId, $databaseId)
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['SingerId', 'AlbumId', 'AlbumTitle']
    );

    foreach ($results->rows() as $row) {
        printf('SingerId: %s, AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['SingerId'], $row['AlbumId'], $row['AlbumTitle']);
    }
}

En el ejemplo, se usa keySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Python

Usa Database.read para leer filas de la base de datos.

def read_data(instance_id, database_id):
    """Reads sample data from the database."""
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot() as snapshot:
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums", columns=("SingerId", "AlbumId", "AlbumTitle"), keyset=keyset
        )

        for row in results:
            print(u"SingerId: {}, AlbumId: {}, AlbumTitle: {}".format(*row))

En el ejemplo, se usa KeySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Ruby

Usa Client#read para leer filas de la base de datos.

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

client.read("Albums", [:SingerId, :AlbumId, :AlbumTitle]).rows.each do |row|
  puts "#{row[:SingerId]} #{row[:AlbumId]} #{row[:AlbumTitle]}"
end

Realizar una lectura inactiva

En el siguiente ejemplo de código, se muestra cómo realizar una lectura inactiva de cero o más filas de una base de datos mediante un límite de marca de tiempo de inactividad exacta. Si quieres obtener instrucciones para realizar una lectura inactiva mediante un límite de marca de tiempo de inactividad limitada, consulta la nota que se encuentra después del código de muestra. Consulta la página sobre límites de marca de tiempo para obtener más información sobre los distintos tipos de límites de marca de tiempo disponibles.

C++

Usa ExecuteQuery() con MakeReadOnlyTransaction() y Transaction::ReadOnlyOptions() para realizar una lectura inactiva.

void ReadStaleData(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  auto opts = spanner::Transaction::ReadOnlyOptions(std::chrono::seconds(15));
  auto read_only = spanner::MakeReadOnlyTransaction(opts);

  spanner::SqlStatement select(
      "SELECT SingerId, AlbumId, AlbumTitle FROM Albums");
  using RowType = std::tuple<std::int64_t, std::int64_t, std::string>;

  auto rows = client.ExecuteQuery(read_only, select);
  for (auto const& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::runtime_error(row.status().message());
    std::cout << "SingerId: " << std::get<0>(*row)
              << " AlbumId: " << std::get<1>(*row)
              << " AlbumTitle: " << std::get<2>(*row) << "\n";
  }
}

C#

Usa el método BeginReadOnlyTransactionAsync en una connection con un valor especificado TimestampBound.OfExactStaleness() para consultar la base de datos.

string connectionString =
    $"Data Source=projects/{projectId}/instances/{instanceId}"
    + $"/databases/{databaseId}";

// Create connection to Cloud Spanner.
using (var connection = new SpannerConnection(connectionString))
{
    await connection.OpenAsync();

    // Open a new read only transaction.
    var staleness = TimestampBound.OfExactStaleness(
        TimeSpan.FromSeconds(15));
    using (var transaction =
        await connection.BeginReadOnlyTransactionAsync(staleness))
    {
        var cmd = connection.CreateSelectCommand(
            "SELECT SingerId, AlbumId, AlbumTitle FROM Albums");
        cmd.Transaction = transaction;

        using (var reader = await cmd.ExecuteReaderAsync())
        {
            while (await reader.ReadAsync())
            {
                Console.WriteLine("SingerId : "
                    + reader.GetFieldValue<string>("SingerId")
                    + " AlbumId : "
                    + reader.GetFieldValue<string>("AlbumId")
                    + " AlbumTitle : "
                    + reader.GetFieldValue<string>("AlbumTitle"));
            }
        }
    }
}

Go

Usa Client.ReadOnlyTransaction().WithTimestampBound() y especifica un valor ExactStaleness para realizar una lectura de las filas de la base de datos mediante un límite de marca de tiempo de inactividad exacta.


import (
	"context"
	"fmt"
	"io"
	"time"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readStaleData(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	ro := client.ReadOnlyTransaction().WithTimestampBound(spanner.ExactStaleness(15 * time.Second))
	defer ro.Close()

	iter := ro.Read(ctx, "Albums", spanner.AllKeys(), []string{"SingerId", "AlbumId", "AlbumTitle"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID int64
		var albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

En el ejemplo, se usa AllKeys para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Java

Usa el método read de un ReadContext que tenga un TimestampBound.ofExactStaleness() especificado para realizar una lectura de las filas de la base de datos mediante un límite de marca de tiempo de inactividad exacta.

static void readStaleData(DatabaseClient dbClient) {
  try (ResultSet resultSet =
      dbClient
          .singleUse(TimestampBound.ofExactStaleness(15, TimeUnit.SECONDS))
          .read(
              "Albums", KeySet.all(), Arrays.asList("SingerId", "AlbumId", "MarketingBudget"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s\n",
          resultSet.getLong(0),
          resultSet.getLong(1),
          resultSet.isNull(2) ? "NULL" : resultSet.getLong("MarketingBudget"));
    }
  }
}

En el ejemplo, se usa KeySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Node.js

Usa Table.read con la opción exactStaleness para realizar una lectura de las filas de la base de datos con un límite de marca de tiempo de inactividad exacta.

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

// Reads rows from the Albums table
const albumsTable = database.table('Albums');

const query = {
  columns: ['SingerId', 'AlbumId', 'AlbumTitle', 'MarketingBudget'],
  keySet: {
    all: true,
  },
};

const options = {
  // Guarantees that all writes committed more than 15 seconds ago are visible
  exactStaleness: 15,
};

try {
  const [rows] = await albumsTable.read(query, options);

  rows.forEach(row => {
    const json = row.toJSON();
    const id = json.SingerId;
    const album = json.AlbumId;
    const title = json.AlbumTitle;
    const budget = json.MarketingBudget ? json.MarketingBudget : '';
    console.log(
      `SingerId: ${id}, AlbumId: ${album}, AlbumTitle: ${title}, MarketingBudget: ${budget}`
    );
  });
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  await database.close();
}

En el ejemplo, se usa keySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

PHP

Usa Database::read con un valor exactStaleness especificado para realizar una lectura de las filas de la base de datos mediante un límite de marca de tiempo de inactividad exacta.

use Google\Cloud\Spanner\Duration;
use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads sample data from the database.  The data is exactly 15 seconds stale.
 * Guarantees that all writes committed more than 15 seconds ago are visible.
 * Example:
 * ```
 * read_stale_data
 *($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_stale_data($instanceId, $databaseId)
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);
    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['SingerId', 'AlbumId', 'AlbumTitle'],
        ['exactStaleness' => new Duration(15)]
    );

    foreach ($results->rows() as $row) {
        printf('SingerId: %s, AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['SingerId'], $row['AlbumId'], $row['AlbumTitle']);
    }
}

En el ejemplo, se usa keySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Python

Usa el método read de la snapshot de una Database que tenga un valor exact_staleness especificado para realizar una lectura de las filas de la base de datos mediante un límite de marca de tiempo de inactividad exacta.

def read_stale_data(instance_id, database_id):
    """Reads sample data from the database. The data is exactly 15 seconds
    stale."""
    import datetime

    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)
    staleness = datetime.timedelta(seconds=15)

    with database.snapshot(exact_staleness=staleness) as snapshot:
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums",
            columns=("SingerId", "AlbumId", "MarketingBudget"),
            keyset=keyset,
        )

        for row in results:
            print(u"SingerId: {}, AlbumId: {}, MarketingBudget: {}".format(*row))

En el ejemplo, se usa KeySet para definir una colección de claves o rangos de claves a fin de realizar lecturas.

Ruby

Usa el método read del Client de una instantánea que tenga un valor staleness especificado (en segundos) para leer filas de la base de datos mediante un límite de marca de tiempo de inactividad exacta.

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"
require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

# Perform a read with a data staleness of 15 seconds
client.snapshot staleness: 15 do |snapshot|
  snapshot.read("Albums", [:SingerId, :AlbumId, :AlbumTitle]).rows.each do |row|
    puts "#{row[:SingerId]} #{row[:AlbumId]} #{row[:AlbumTitle]}"
  end
end

Realizar una lectura mediante un índice

A continuación, se muestra cómo leer cero o más filas de una base de datos mediante un índice.

C++

Usa la función Read() para realizar una lectura mediante un índice.

void ReadDataWithIndex(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;

  spanner::ReadOptions read_options;
  read_options.index_name = "AlbumsByAlbumTitle";
  auto rows = client.Read("Albums", google::cloud::spanner::KeySet::All(),
                          {"AlbumId", "AlbumTitle"}, read_options);
  using RowType = std::tuple<std::int64_t, std::string>;
  for (auto const& row : spanner::StreamOf<RowType>(rows)) {
    if (!row) throw std::runtime_error(row.status().message());
    std::cout << "AlbumId: " << std::get<0>(*row) << "\t";
    std::cout << "AlbumTitle: " << std::get<1>(*row) << "\n";
  }
  std::cout << "Read completed for [spanner_read_data_with_index]\n";
}

C#

Para leer los datos mediante el índice, ejecuta una consulta que especifique el índice de forma explícita:

string connectionString =
$"Data Source=projects/{projectId}/instances/{instanceId}"
+ $"/databases/{databaseId}";
// Create connection to Cloud Spanner.
using (var connection = new SpannerConnection(connectionString))
{
    var cmd = connection.CreateSelectCommand(
        "SELECT AlbumId, AlbumTitle, MarketingBudget FROM Albums@ "
        + "{FORCE_INDEX=AlbumsByAlbumTitle} "
        + $"WHERE AlbumTitle >= @startTitle "
        + $"AND AlbumTitle < @endTitle",
        new SpannerParameterCollection {
            {"startTitle", SpannerDbType.String},
            {"endTitle", SpannerDbType.String} });
    cmd.Parameters["startTitle"].Value = startTitle;
    cmd.Parameters["endTitle"].Value = endTitle;
    using (var reader = await cmd.ExecuteReaderAsync())
    {
        while (await reader.ReadAsync())
        {
            var marketingBudget = reader.IsDBNull(
                reader.GetOrdinal("MarketingBudget")) ?
                "" :
                reader.GetFieldValue<string>("MarketingBudget");
            Console.WriteLine("AlbumId : "
            + reader.GetFieldValue<string>("AlbumId")
            + " AlbumTitle : "
            + reader.GetFieldValue<string>("AlbumTitle")
            + " MarketingBudget : "
            + marketingBudget);
        }
    }
}

Go

Usa Client.Single().ReadUsingIndex para leer filas de la base de datos mediante un índice.


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readUsingIndex(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	iter := client.Single().ReadUsingIndex(ctx, "Albums", "AlbumsByAlbumTitle", spanner.AllKeys(),
		[]string{"AlbumId", "AlbumTitle"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var albumID int64
		var albumTitle string
		if err := row.Columns(&albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %s\n", albumID, albumTitle)
	}
}

Java

Usa ReadContext.readUsingIndex para leer filas de la base de datos mediante un índice.

static void readUsingIndex(DatabaseClient dbClient) {
  try (ResultSet resultSet =
      dbClient
          .singleUse()
          .readUsingIndex(
              "Albums",
              "AlbumsByAlbumTitle",
              KeySet.all(),
              Arrays.asList("AlbumId", "AlbumTitle"))) {
    while (resultSet.next()) {
      System.out.printf("%d %s\n", resultSet.getLong(0), resultSet.getString(1));
    }
  }
}

Node.js

Usa Table.read y especifica el índice en la consulta para leer filas de la base de datos mediante un índice.

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

const albumsTable = database.table('Albums');

const query = {
  columns: ['AlbumId', 'AlbumTitle'],
  keySet: {
    all: true,
  },
  index: 'AlbumsByAlbumTitle',
};

// Reads the Albums table using an index
try {
  const [rows] = await albumsTable.read(query);

  rows.forEach(row => {
    const json = row.toJSON();
    console.log(`AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`);
  });
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  database.close();
}

PHP

Usa Database::read y especifica el índice para leer filas de la base de datos mediante un índice.

use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads sample data from the database using an index.
 *
 * The index must exist before running this sample. You can add the index
 * by running the `add_index` sample or by running this DDL statement against
 * your database:
 *
 *     CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)
 *
 * Example:
 * ```
 * read_data_with_index($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_data_with_index($instanceId, $databaseId)
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['AlbumId', 'AlbumTitle'],
        ['index' => 'AlbumsByAlbumTitle']
    );

    foreach ($results->rows() as $row) {
        printf('AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['AlbumId'], $row['AlbumTitle']);
    }
}

Python

Usa Database.read y especifica el índice para leer filas de la base de datos mediante un índice.

def read_data_with_index(instance_id, database_id):
    """Reads sample data from the database using an index.

    The index must exist before running this sample. You can add the index
    by running the `add_index` sample or by running this DDL statement against
    your database:

        CREATE INDEX AlbumsByAlbumTitle ON Albums(AlbumTitle)

    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot() as snapshot:
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums",
            columns=("AlbumId", "AlbumTitle"),
            keyset=keyset,
            index="AlbumsByAlbumTitle",
        )

        for row in results:
            print("AlbumId: {}, AlbumTitle: {}".format(*row))

Ruby

Usa Client#read y especifica el índice para leer filas de la base de datos mediante un índice.

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

result = client.read "Albums", [:AlbumId, :AlbumTitle],
                     index: "AlbumsByAlbumTitle"

result.rows.each do |row|
  puts "#{row[:AlbumId]} #{row[:AlbumTitle]}"
end

Leer datos en paralelo

Cuando lees o consultas grandes cantidades de datos de Cloud Spanner, puede ser útil dividir la consulta en partes más pequeñas, o particiones, y usar varias máquinas para recuperar las particiones en paralelo.

Puedes realizar cualquier operación de la API de lectura en paralelo mediante las bibliotecas cliente de Cloud Spanner. Sin embargo, solo puedes particionar las consultas de SQL en las que el primer operador en el plan de ejecución de consultas sea una unión distribuida. Para ver el plan de ejecución de consultas de una consulta de SQL en particular, sigue las instrucciones de la página de prácticas recomendadas de SQL.

Una vez que tengas el plan de ejecución de consultas, asegúrate de que el primer operador que contiene sea una unión distribuida.

C++

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea una transacción por lotes de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.
void UsePartitionQuery(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  auto txn = spanner::MakeReadOnlyTransaction();

  spanner::SqlStatement select(
      "SELECT SingerId, FirstName, LastName FROM Singers");
  using RowType = std::tuple<std::int64_t, std::string, std::string>;

  auto partitions = client.PartitionQuery(std::move(txn), select, {});
  if (!partitions) throw std::runtime_error(partitions.status().message());
  int number_of_rows = 0;
  for (auto const& partition : *partitions) {
    auto rows = client.ExecuteQuery(partition);
    for (auto const& row : spanner::StreamOf<RowType>(rows)) {
      if (!row) throw std::runtime_error(row.status().message());
      number_of_rows++;
    }
  }
  std::cout << "Number of partitions: " << partitions->size() << "\n"
            << "Number of rows: " << number_of_rows << "\n";
  std::cout << "Read completed for [spanner_batch_client]\n";
}

C#

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea una transacción por lotes de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.
private static int s_partitionId;
private static int s_rowsRead;
public static object BatchReadRecords(string projectId,
     string instanceId, string databaseId)
{
    var responseTask =
        DistributedReadAsync(projectId, instanceId, databaseId);
    Console.WriteLine("Waiting for operation to complete...");
    responseTask.Wait();
    Console.WriteLine($"Operation status: {responseTask.Status}");
    return ExitCode.Success;
}

private static async Task DistributedReadAsync(string projectId,
    string instanceId, string databaseId)
{
    string connectionString =
        $"Data Source=projects/{projectId}/instances/{instanceId}"
        + $"/databases/{databaseId}";
    using (var connection = new SpannerConnection(connectionString))
    {
        await connection.OpenAsync();

        using (var transaction =
            await connection.BeginReadOnlyTransactionAsync())
        using (var cmd =
            connection.CreateSelectCommand(
                "SELECT SingerId, FirstName, LastName FROM Singers"))
        {
            transaction.DisposeBehavior =
                DisposeBehavior.CloseResources;
            cmd.Transaction = transaction;
            var partitions = await cmd.GetReaderPartitionsAsync();
            var transactionId = transaction.TransactionId;
            await Task.WhenAll(partitions.Select(
                    x => DistributedReadWorkerAsync(x, transactionId)))
                        .ConfigureAwait(false);
        }
        Console.WriteLine($"Done reading!  Total rows read: "
            + $"{s_rowsRead:N0} with {s_partitionId} partition(s)");
    }
}

private static async Task DistributedReadWorkerAsync(
    CommandPartition readPartition, TransactionId id)
{
    var localId = Interlocked.Increment(ref s_partitionId);
    using (var connection = new SpannerConnection(id.ConnectionString))
    using (var transaction = connection.BeginReadOnlyTransaction(id))
    {
        using (var cmd = connection.CreateCommandWithPartition(
            readPartition, transaction))
        {
            using (var reader =
                await cmd.ExecuteReaderAsync().ConfigureAwait(false))
            {
                while (await reader.ReadAsync())
                {
                    Interlocked.Increment(ref s_rowsRead);
                    Console.WriteLine($"Partition ({localId}) "
                        + $"{reader.GetFieldValue<string>("SingerId")}"
                        + $" {reader.GetFieldValue<string>("FirstName")}"
                        + $" {reader.GetFieldValue<string>("LastName")}");
                }
            }
        }
        Console.WriteLine($"Done with single reader {localId}.");
    }
}

Go

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea un cliente y una transacción de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readBatchData(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	txn, err := client.BatchReadOnlyTransaction(ctx, spanner.StrongRead())
	if err != nil {
		return err
	}
	defer txn.Close()

	// Singer represents a row in the Singers table.
	type Singer struct {
		SingerID   int64
		FirstName  string
		LastName   string
		SingerInfo []byte
	}
	stmt := spanner.Statement{SQL: "SELECT SingerId, FirstName, LastName FROM Singers;"}
	partitions, err := txn.PartitionQuery(ctx, stmt, spanner.PartitionOptions{})
	if err != nil {
		return err
	}
	recordCount := 0
	for i, p := range partitions {
		iter := txn.Execute(ctx, p)
		defer iter.Stop()
		for {
			row, err := iter.Next()
			if err == iterator.Done {
				break
			} else if err != nil {
				return err
			}
			var s Singer
			if err := row.ToStruct(&s); err != nil {
				return err
			}
			fmt.Fprintf(w, "Partition (%d) %v\n", i, s)
			recordCount++
		}
	}
	fmt.Fprintf(w, "Total partition count: %v\n", len(partitions))
	fmt.Fprintf(w, "Total record count: %v\n", recordCount)
	return nil
}

Java

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea un cliente por lotes y una transacción de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.
int numThreads = Runtime.getRuntime().availableProcessors();
ExecutorService executor = Executors.newFixedThreadPool(numThreads);

// Statistics
int totalPartitions;
AtomicInteger totalRecords = new AtomicInteger(0);

try {
  BatchClient batchClient =
      spanner.getBatchClient(DatabaseId.of(options.getProjectId(), instanceId, databaseId));

  final BatchReadOnlyTransaction txn =
      batchClient.batchReadOnlyTransaction(TimestampBound.strong());

  // A Partition object is serializable and can be used from a different process.
  List<Partition> partitions =
      txn.partitionQuery(
          PartitionOptions.getDefaultInstance(),
          Statement.of("SELECT SingerId, FirstName, LastName FROM Singers"));

  totalPartitions = partitions.size();

  for (final Partition p : partitions) {
    executor.execute(
        () -> {
          try (ResultSet results = txn.execute(p)) {
            while (results.next()) {
              long singerId = results.getLong(0);
              String firstName = results.getString(1);
              String lastName = results.getString(2);
              System.out.println("[" + singerId + "] " + firstName + " " + lastName);
              totalRecords.getAndIncrement();
            }
          }
        });
  }
} finally {
  executor.shutdown();
  executor.awaitTermination(1, TimeUnit.HOURS);
  spanner.close();
}

double avgRecordsPerPartition = 0.0;
if (totalPartitions != 0) {
  avgRecordsPerPartition = (double) totalRecords.get() / totalPartitions;
}
System.out.println("totalPartitions=" + totalPartitions);
System.out.println("totalRecords=" + totalRecords);
System.out.println("avgRecordsPerPartition=" + avgRecordsPerPartition);

Node.js

En este ejemplo, se muestra cómo recuperar las particiones de una consulta de SQL de la tabla Singers y, luego, ejecutar la consulta en cada partición.

Esta parte del código genera particiones:

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';
// const identifier = {};

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);
const transaction = database.batchTransaction(identifier);

const query = 'SELECT * FROM Singers';

const [partitions] = await transaction.createQueryPartitions(query);
console.log(`Successfully created ${partitions.length} query partitions.`);

Luego, esta parte del código ejecuta la consulta en cada partición:

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';
// const identifier = {};
// const partition = {};

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);
const transaction = database.batchTransaction(identifier);

const [rows] = await transaction.execute(partition);
console.log(`Successfully received ${rows.length} from executed partition.`);

PHP

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea un cliente y un lote de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.
use Google\Cloud\Spanner\SpannerClient;

/**
 * Queries sample data from the database using SQL.
 * Example:
 * ```
 * batch_query_data($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function batch_query_data($instanceId, $databaseId)
{
    $spanner = new SpannerClient();
    $batch = $spanner->batch($instanceId, $databaseId);
    $snapshot = $batch->snapshot();
    $queryString = 'SELECT SingerId, FirstName, LastName FROM Singers';
    $partitions = $snapshot->partitionQuery($queryString);
    $totalPartitions = count($partitions);
    $totalRecords = 0;
    foreach ($partitions as $partition) {
        $result = $snapshot->executePartition($partition);
        $rows = $result->rows();
        foreach ($rows as $row) {
            $singerId = $row['SingerId'];
            $firstName = $row['FirstName'];
            $lastName = $row['LastName'];
            printf('SingerId: %s, FirstName: %s, LastName: %s' . PHP_EOL, $singerId, $firstName, $lastName);
            $totalRecords++;
        }
    }
    printf('Total Partitions: %d' . PHP_EOL, $totalPartitions);
    printf('Total Records: %d' . PHP_EOL, $totalRecords);
    $averageRecordsPerPartition = $totalRecords / $totalPartitions;
    printf('Average Records Per Partition: %f' . PHP_EOL, $averageRecordsPerPartition);
}

Python

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea un cliente y una transacción por lotes de Cloud Spanner.
  • Genera particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores.
  • Recupera los resultados de la consulta en cada partición.

def run_batch_query(instance_id, database_id):
    """Runs an example batch query."""

    # Expected Table Format:
    # CREATE TABLE Singers (
    #   SingerId   INT64 NOT NULL,
    #   FirstName  STRING(1024),
    #   LastName   STRING(1024),
    #   SingerInfo BYTES(MAX),
    # ) PRIMARY KEY (SingerId);

    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    # Create the batch transaction and generate partitions
    snapshot = database.batch_snapshot()
    partitions = snapshot.generate_read_batches(
        table="Singers",
        columns=("SingerId", "FirstName", "LastName"),
        keyset=spanner.KeySet(all_=True),
    )

    # Create a pool of workers for the tasks
    start = time.time()
    with concurrent.futures.ThreadPoolExecutor() as executor:
        futures = [executor.submit(process, snapshot, p) for p in partitions]

        for future in concurrent.futures.as_completed(futures, timeout=3600):
            finish, row_ct = future.result()
            elapsed = finish - start
            print(u"Completed {} rows in {} seconds".format(row_ct, elapsed))

    # Clean up
    snapshot.close()

def process(snapshot, partition):
    """Processes the requests of a query in an separate process."""
    print("Started processing partition.")
    row_ct = 0
    for row in snapshot.process_read_batch(partition):
        print(u"SingerId: {}, AlbumId: {}, AlbumTitle: {}".format(*row))
        row_ct += 1
    return time.time(), row_ct

Ruby

En este ejemplo, se recuperan las particiones de una consulta de SQL de la tabla Singers y se ejecuta la consulta en cada partición mediante los siguientes pasos:

  • Crea un cliente por lotes de Cloud Spanner.
  • Crea particiones para la consulta, de modo que las particiones se puedan distribuir a varios trabajadores
  • Recupera los resultados de la consulta en cada partición.
# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

# Prepare a thread pool with number of processors
processor_count  = Concurrent.processor_count
thread_pool      = Concurrent::FixedThreadPool.new processor_count

# Prepare AtomicFixnum to count total records using multiple threads
total_records = Concurrent::AtomicFixnum.new

# Create a new Spanner batch client
spanner        = Google::Cloud::Spanner.new project: project_id
batch_client   = spanner.batch_client instance_id, database_id

# Get a strong timestamp bound batch_snapshot
batch_snapshot = batch_client.batch_snapshot strong: true

# Get partitions for specified query
partitions       = batch_snapshot.partition_query "SELECT SingerId, FirstName, LastName FROM Singers"
total_partitions = partitions.size

# Enqueue a new thread pool job
partitions.each_with_index do |partition, _partition_index|
  thread_pool.post do
    # Increment total_records per new row
    batch_snapshot.execute_partition(partition).rows.each do |_row|
      total_records.increment
    end
  end
end

# Wait for queued jobs to complete
thread_pool.shutdown
thread_pool.wait_for_termination

# Close the client connection and release resources.
batch_snapshot.close

# Collect statistics for batch query
average_records_per_partition = 0.0
if total_partitions != 0
  average_records_per_partition = total_records.value / total_partitions.to_f
end

puts "Total Partitions: #{total_partitions}"
puts "Total Records: #{total_records.value}"
puts "Average records per Partition: #{average_records_per_partition}"