OpenCensus を使用してカスタム クライアントサイド指標をキャプチャする

このドキュメントでは、OpenCensus を使用してカスタム クライアントサイド指標をキャプチャする方法について説明します。カスタム クライアントサイド指標は、システムのレイテンシの原因を特定するのに役立ちます。詳細については、レイテンシ ポイントを特定するをご覧ください。

Spanner クライアント ライブラリは、OpenCensus オブザーバビリティ フレームワークを使用して統計情報とトレースも提供します。デフォルトでは、フレームワークは無効になっています。

カスタム指標をキャプチャする前に、OpenCensus に関連するカスタム指標をよく理解し、OpenCensus 指標ライブラリと Google Cloud Observability エクスポータをアプリケーションで使用できるようにする必要があります。

クライアントの往復レイテンシをキャプチャする

クライアントのラウンドトリップ レイテンシは、クライアントがデータベースに送信する Spanner API リクエストの最初のバイトと、クライアントがデータベースから受信したレスポンスの最後のバイトの間の時間(ミリ秒単位)です。API リクエストは、Google Front End(GFE)または Cloud Spanner API フロントエンド経由で送信できます。

クライアントの往復レイテンシをキャプチャするには、次のコードを使用します。

Java

static void captureGrpcMetric(DatabaseClient dbClient) {
  // Add io.grpc:grpc-census and io.opencensus:opencensus-exporter-stats-stackdriver
  //  dependencies to enable gRPC metrics.

  // Register basic gRPC views.
  RpcViews.registerClientGrpcBasicViews();

  // Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet =
      dbClient
          .singleUse() // Execute a single read or query against Cloud Spanner.
          .executeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

Go


import (
	"context"
	"fmt"
	"io"
	"regexp"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/plugin/ocgrpc"
	"go.opencensus.io/stats/view"
)

var validDatabasePattern = regexp.MustCompile("^projects/(?P<project>[^/]+)/instances/(?P<instance>[^/]+)/databases/(?P<database>[^/]+)$")

func queryWithGRPCMetric(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	if err := view.Register(ocgrpc.DefaultClientViews...); err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := client.Single().Query(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

func parseDatabaseName(databaseUri string) (project, instance, database string, err error) {
	matches := validDatabasePattern.FindStringSubmatch(databaseUri)
	if len(matches) == 0 {
		return "", "", "", fmt.Errorf("failed to parse database name from %q according to pattern %q",
			databaseUri, validDatabasePattern.String())
	}
	return matches[1], matches[2], matches[3], nil
}

このコードサンプルでは、Cloud Monitoring にエクスポートするときに、指標名に文字列 roundtrip_latency を追加します。この指標は、追加された文字列を使用して Cloud Monitoring で検索できます。

GFE レイテンシをキャプチャする

GFE レイテンシは、Google ネットワークがクライアントからリモート プロシージャ コールを受信してから、GFE がレスポンスの最初のバイトを受信するまでの時間(ミリ秒単位)です。

GFE レイテンシをキャプチャするには、次のコードを使用します。

Java

static void captureGfeMetric(DatabaseClient dbClient) {
  // Capture GFE Latency.
  SpannerRpcViews.registerGfeLatencyView();

  // Capture GFE Latency and GFE Header missing count.
  // SpannerRpcViews.registerGfeLatencyAndHeaderMissingCountViews();

  // Capture only GFE Header missing count.
  // SpannerRpcViews.registerGfeHeaderMissingCountView();

  // Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet =
      dbClient
          .singleUse() // Execute a single read or query against Cloud Spanner.
          .executeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

Go


// We are in the process of adding support in the Cloud Spanner Go Client Library
// to capture the gfe_latency metric.

import (
	"context"
	"fmt"
	"io"
	"strconv"
	"strings"

	spanner "cloud.google.com/go/spanner/apiv1"
	sppb "cloud.google.com/go/spanner/apiv1/spannerpb"
	gax "github.com/googleapis/gax-go/v2"
	"google.golang.org/grpc"
	"google.golang.org/grpc/metadata"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/stats"
	"go.opencensus.io/stats/view"
	"go.opencensus.io/tag"
)

// OpenCensus Tag, Measure and View.
var (
	KeyMethod    = tag.MustNewKey("grpc_client_method")
	GFELatencyMs = stats.Int64("cloud.google.com/go/spanner/gfe_latency",
		"Latency between Google's network receives an RPC and reads back the first byte of the response", "ms")
	GFELatencyView = view.View{
		Name:        "cloud.google.com/go/spanner/gfe_latency",
		Measure:     GFELatencyMs,
		Description: "Latency between Google's network receives an RPC and reads back the first byte of the response",
		Aggregation: view.Distribution(0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
			16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
			300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
			100000.0),
		TagKeys: []tag.Key{KeyMethod}}
)

func queryWithGFELatency(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	err = view.Register(&GFELatencyView)
	if err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	// Create a session.
	req := &sppb.CreateSessionRequest{Database: db}
	session, err := client.CreateSession(ctx, req)
	if err != nil {
		return err
	}

	// Execute a SQL query and retrieve the GFE server-timing header in gRPC metadata.
	req2 := &sppb.ExecuteSqlRequest{
		Session: session.Name,
		Sql:     `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`,
	}
	var md metadata.MD
	resultSet, err := client.ExecuteSql(ctx, req2, gax.WithGRPCOptions(grpc.Header(&md)))
	if err != nil {
		return err
	}
	for _, row := range resultSet.GetRows() {
		for _, value := range row.GetValues() {
			fmt.Fprintf(w, "%s ", value.GetStringValue())
		}
		fmt.Fprintf(w, "\n")
	}

	// The format is: "server-timing: gfet4t7; dur=[GFE latency in ms]"
	srvTiming := md.Get("server-timing")[0]
	gfeLtcy, err := strconv.Atoi(strings.TrimPrefix(srvTiming, "gfet4t7; dur="))
	if err != nil {
		return err
	}
	// Record GFE t4t7 latency with OpenCensus.
	ctx, err = tag.New(ctx, tag.Insert(KeyMethod, "ExecuteSql"))
	if err != nil {
		return err
	}
	stats.Record(ctx, GFELatencyMs.M(int64(gfeLtcy)))

	return nil
}

このコードサンプルでは、Cloud Monitoring にエクスポートするときに、指標名に文字列 spanner/gfe_latency を追加します。この指標は、追加された文字列を使用して Cloud Monitoring で検索できます。

Cloud Spanner API リクエストのレイテンシをキャプチャする

Cloud Spanner API リクエストのレイテンシは、Cloud Spanner API フロントエンドが受信したクライアント リクエストの最初のバイトから、Cloud Spanner API フロントエンドが送信したレスポンスの最後のバイトまでの時間(秒単位)です。

このレイテンシ指標は、Cloud Monitoring の Spanner 指標の一部として利用できます。

クエリのレイテンシをキャプチャする

クエリのレイテンシは、Spanner データベースで SQL クエリを実行するのにかかる時間(ミリ秒単位)です。

クエリのレイテンシをキャプチャするには、次のコードを使用します。

Java

private static final String MILLISECOND = "ms";
static final List<Double> RPC_MILLIS_BUCKET_BOUNDARIES =
    Collections.unmodifiableList(
        Arrays.asList(
            0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
            16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
            300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
            100000.0));
static final Aggregation AGGREGATION_WITH_MILLIS_HISTOGRAM =
    Distribution.create(BucketBoundaries.create(RPC_MILLIS_BUCKET_BOUNDARIES));

static MeasureDouble QUERY_STATS_ELAPSED =
    MeasureDouble.create(
        "cloud.google.com/java/spanner/query_stats_elapsed",
        "The execution of the query",
        MILLISECOND);

// Register the view. It is imperative that this step exists,
// otherwise recorded metrics will be dropped and never exported.
static View QUERY_STATS_LATENCY_VIEW = View
    .create(Name.create("cloud.google.com/java/spanner/query_stats_elapsed"),
        "The execution of the query",
        QUERY_STATS_ELAPSED,
        AGGREGATION_WITH_MILLIS_HISTOGRAM,
        Collections.emptyList());

static ViewManager manager = Stats.getViewManager();
private static final StatsRecorder STATS_RECORDER = Stats.getStatsRecorder();

static void captureQueryStatsMetric(DatabaseClient dbClient) {
  manager.registerView(QUERY_STATS_LATENCY_VIEW);

  // Enable OpenCensus exporters to export metrics to Cloud Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet = dbClient.singleUse()
      .analyzeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"),
          QueryAnalyzeMode.PROFILE)) {

    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
    Value value = resultSet.getStats().getQueryStats()
        .getFieldsOrDefault("elapsed_time", Value.newBuilder().setStringValue("0 msecs").build());
    double elapasedTime = Double.parseDouble(value.getStringValue().replaceAll(" msecs", ""));
    STATS_RECORDER.newMeasureMap()
        .put(QUERY_STATS_ELAPSED, elapasedTime)
        .record();
  }
}

Go


import (
	"context"
	"fmt"
	"io"
	"strconv"
	"strings"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/stats"
	"go.opencensus.io/stats/view"
	"go.opencensus.io/tag"
)

// OpenCensus Tag, Measure and View.
var (
	QueryStatsElapsed = stats.Float64("cloud.google.com/go/spanner/query_stats_elapsed",
		"The execution of the query", "ms")
	QueryStatsLatencyView = view.View{
		Name:        "cloud.google.com/go/spanner/query_stats_elapsed",
		Measure:     QueryStatsElapsed,
		Description: "The execution of the query",
		Aggregation: view.Distribution(0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
			16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
			300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
			100000.0),
		TagKeys: []tag.Key{}}
)

func queryWithQueryStats(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	err = view.Register(&QueryStatsLatencyView)
	if err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	// Execute a SQL query and get the query stats.
	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := client.Single().QueryWithStats(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			// Record query execution time with OpenCensus.
			elapasedTime := iter.QueryStats["elapsed_time"].(string)
			elapasedTimeMs, err := strconv.ParseFloat(strings.TrimSuffix(elapasedTime, " msecs"), 64)
			if err != nil {
				return err
			}
			stats.Record(ctx, QueryStatsElapsed.M(elapasedTimeMs))
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

このコードサンプルでは、Cloud Monitoring にエクスポートするときに、指標名に文字列 spanner/query_stats_elapsed を追加します。この指標は、追加された文字列を使用して Cloud Monitoring で検索できます。

Metrics Explorer で指標を表示する

  1. Google Cloud コンソールで、[Metrics Explorer] ページに移動します。

    Metrics Explorer に移動

  2. プロジェクトを選択します。

  3. [指標を選択] をクリックします。

  4. 次の文字列を使用して、レイテンシ指標を検索します。

    • roundtrip_latency: クライアントのラウンドトリップ レイテンシ指標。
    • spanner/gfe_latency: GFE レイテンシ指標。
    • spanner/query_stats_elapsed: クエリ レイテンシ指標。
  5. 指標を選択して [適用] をクリックします。

指標のグループ化または集計の詳細については、メニューを使用してクエリを作成するをご覧ください。

次のステップ

  • OpenCensus の詳細について学びます。

  • 指標を使用してレイテンシを診断する方法を学習する。