Práticas recomendadas do Dataproc para produção

Este documento aborda as práticas recomendadas do Dataproc que podem ajudar você executar jobs de processamento de dados confiáveis, eficientes e cheios de insights Clusters do Dataproc em ambientes de produção.

Especificar versões da imagem do cluster

O Dataproc usa versões de imagem para agrupar sistemas operacionais, componentes de Big Data, e conectores do Google Cloud em um pacote implantado em um cluster. Se você não especificar uma versão de imagem ao criar um cluster, o Dataproc o padrão é a versão de imagem estável mais recente.

Para ambientes de produção, associe o cluster a uma versão específica da imagem do major.minor Dataproc, conforme mostrado no comando da CLI do gcloud a seguir.

gcloud dataproc clusters create CLUSTER_NAME \
    --region=region \
    --image-version=2.0

O Dataproc resolve a versão major.minor para a versão subsecundária mais recente. (2.0 é resolvido para 2.0.x). Observação: se você precisar de uma versão subsecundária para o cluster, é possível especificá-lo: por exemplo, --image-version=2.0.x. Consulte Como funciona o controle de versões para mais informações.

Versões de imagem de pré-visualização do Dataproc

As novas versões secundárias das imagens do Dataproc estão disponíveis em uma versão preview antes do lançamento na faixa de versão secundária padrão. Use uma imagem de visualização para testar e validar seus jobs em relação a uma nova versão secundária de imagem antes de adotar a versão padrão da imagem secundária na produção. Consulte Controle de versões do Dataproc para mais informações.

Use imagens personalizadas quando necessário

Se você tiver dependências para adicionar ao cluster, como bibliotecas nativas do Python ou softwares de proteção contra vírus ou aumento da segurança, crie uma imagem personalizada a partir da imagem mais recente na faixa de versão da imagem secundária de destino. Essa prática permite atender aos requisitos de dependência quando você cria clusters usando a imagem personalizada. Ao recriar a imagem personalizada para atualizar os requisitos de dependência, use a versão de imagem subsecundária mais recente disponível na faixa de imagem secundária.

Enviar jobs para o serviço do Dataproc

Envie jobs para o serviço do Dataproc com uma chamada jobs.submit usando a CLI gcloud ou o console do Google Cloud. Defina permissões de job e cluster concedendo Papéis do Dataproc Use papéis personalizados para separar o acesso ao cluster das permissões de envio de trabalhos.

Benefícios de enviar jobs para o serviço do Dataproc:

  • Não são necessárias configurações de rede complicadas, e a API é amplamente acessível
  • Permissões e papéis do IAM fáceis de gerenciar
  • Acompanhe o status do job com facilidade, sem metadados de jobs do Dataproc para complicar os resultados.

Na produção, execute jobs que dependem apenas do nível do cluster dependências em uma versão de imagem secundária fixa, (por exemplo, --image-version=2.0). Agrupamento dependências com jobs quando eles forem enviados. Enviar um uber jar para o Spark ou o MapReduce é uma maneira comum de fazer isso.

  • Exemplo: se um jar do job depende de args4j e spark-sql, com args4j específico para o job e spark-sql uma dependência no nível do cluster, agrupe args4j no uber jar do job.

Controlar os locais de ação de inicialização

Ações de inicialização permitem que você execute scripts ou instale componentes ao criar um cluster do Dataproc (consulte a dataproc-initialization-actions repositório do GitHub para ações comuns de inicialização do Dataproc). Ao usar ações de inicialização de cluster em uma produção copie os scripts de inicialização para o Cloud Storage em vez de extraí-los de um repositório público. Essa prática evita scripts de inicialização que estão sujeitos à modificação por outras pessoas.

Notas de lançamento do Monitor Dataproc

O Dataproc lança regularmente novas versões de imagens subsecundárias. Visualizar ou assinar as notas da versão do Dataproc conhecer os lançamentos mais recentes de versões de imagem do Dataproc e outras anúncios, mudanças e correções.

Conferir o bucket de preparação para investigar falhas

  1. Analise o bucket de preparação do cluster para investigar as mensagens de erro do cluster e do job. Normalmente, o local do Cloud Storage do bucket de preparo é mostrado em de erro conforme exibido em negrito no exemplo de erro a seguir mensagem:

    ERROR:
    (gcloud.dataproc.clusters.create) Operation ... failed:
    ...
    - Initialization action failed. Failed action ... see output in: 
    gs://dataproc-<BUCKETID>-us-central1/google-cloud-dataproc-metainfo/CLUSTERID/<CLUSTER_ID>\dataproc-initialization-script-0_output
     

  2. Use a CLI gcloud para visualizar o conteúdo do bucket de preparo:

    gcloud storage cat gs://STAGING_BUCKET
    
    Exemplo de saída:
    + readonly RANGER_VERSION=1.2.0
    ... Ranger admin password not set. Please use metadata flag - default-password
    

Receber suporte

O Google Cloud oferece suporte às suas cargas de trabalho OSS de produção e ajuda você a atender SLAs comerciais pelos níveis de suporte. Além disso, o Google Cloud Os serviços de consultoria fornecem orientações sobre as práticas recomendadas. para implantações de produção da equipe.

Para mais informações