STREAMING_TIMELINE view

The INFORMATION_SCHEMA.STREAMING_TIMELINE view contains per minute aggregated streaming statistics for the current project.

You can query the INFORMATION_SCHEMA streaming views to retrieve historical and real-time information about streaming data into BigQuery that uses the legacy tabledata.insertAll method and not the BigQuery Storage Write API. For more information about streaming data into BigQuery, see Streaming data into BigQuery.

Required permission

To query the INFORMATION_SCHEMA.STREAMING_TIMELINE view, you need the bigquery.tables.list Identity and Access Management (IAM) permission for the project.

Each of the following predefined IAM roles includes the required permission:

  • roles/bigquery.user
  • roles/bigquery.dataViewer
  • roles/bigquery.dataEditor
  • roles/bigquery.dataOwner
  • roles/bigquery.metadataViewer
  • roles/bigquery.resourceAdmin
  • roles/bigquery.admin

For more information about BigQuery permissions, see Access control with IAM.

Schema

When you query the INFORMATION_SCHEMA streaming views, the query results contain historical and real-time information about streaming data into BigQuery. Each row in the following views represents statistics for streaming into a specific table, aggregated over a one minute interval starting at start_timestamp. Statistics are grouped by error code, so there will be one row for each error code encountered during the one minute interval for each timestamp and table combination. Successful requests have the error code set to NULL. If no data was streamed into a table during a certain time period, then no rows are present for the corresponding timestamps for that table.

The INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_* views have the following schema:

Column name Data type Value
start_timestamp TIMESTAMP (Partitioning column) Start timestamp of the 1 minute interval for the aggregated statistics.
project_id STRING (Clustering column) ID of the project.
project_number INTEGER Number of the project.
dataset_id STRING (Clustering column) ID of the dataset.
table_id STRING (Clustering column) ID of the table.
error_code STRING Error code returned for the requests specified by this row. NULL for successful requests.
total_requests INTEGER Total number of requests within the 1 minute interval.
total_rows INTEGER Total number of rows from all requests within the 1 minute interval.
total_input_bytes INTEGER Total number of bytes from all rows within the 1 minute interval.

Data retention

This view contains the streaming history of the past 180 days.

Scope and syntax

Queries against this view must include a region qualifier. If you do not specify a regional qualifier, metadata is retrieved from all regions. The following table explains the region scope for this view:

View name Resource scope Region scope
[PROJECT_ID.]`region-REGION`.INFORMATION_SCHEMA.STREAMING_TIMELINE[_BY_PROJECT] Project level REGION
Replace the following:

  • Optional: PROJECT_ID: the ID of your Google Cloud project. If not specified, the default project is used.

  • REGION: any dataset region name. For example, `region-us`.

  • Example

    • To query data in the US multi-region, use `region-us`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    • To query data in the EU multi-region, use `region-eu`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    • To query data in the asia-northeast1 region, use `region-asia-northeast1`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT

    For a list of available regions, see Dataset locations.

    Examples

    Example 1: Recent streaming failures

    The following example calculates the per minute breakdown of total failed requests for all tables in the project in the last 30 minutes, split by error code:

    SELECT
      start_timestamp,
      error_code,
      SUM(total_requests) AS num_failed_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    WHERE
      error_code IS NOT NULL
      AND start_timestamp > TIMESTAMP_SUB(CURRENT_TIMESTAMP, INTERVAL 30 MINUTE)
    GROUP BY
      start_timestamp,
      error_code
    ORDER BY
      start_timestamp DESC;
    

    The result is similar to the following:

    +---------------------+------------------+---------------------+
    |   start_timestamp   |    error_code    | num_failed_requests |
    +---------------------+------------------+---------------------+
    | 2020-04-15 20:55:00 | INTERNAL_ERROR   |                  41 |
    | 2020-04-15 20:41:00 | CONNECTION_ERROR |                   5 |
    | 2020-04-15 20:30:00 | INTERNAL_ERROR   |                 115 |
    +---------------------+------------------+---------------------+
    
    Example 2: Per minute breakdown for all requests with error codes

    The following example calculates a per minute breakdown of successful and failed streaming requests, split into error code categories. This query could be used to populate a dashboard.

    SELECT
      start_timestamp,
      SUM(total_requests) AS total_requests,
      SUM(total_rows) AS total_rows,
      SUM(total_input_bytes) AS total_input_bytes,
      SUM(
        IF(
          error_code IN ('QUOTA_EXCEEDED', 'RATE_LIMIT_EXCEEDED'),
          total_requests,
          0)) AS quota_error,
      SUM(
        IF(
          error_code IN (
            'INVALID_VALUE', 'NOT_FOUND', 'SCHEMA_INCOMPATIBLE',
            'BILLING_NOT_ENABLED', 'ACCESS_DENIED', 'UNAUTHENTICATED'),
          total_requests,
          0)) AS user_error,
      SUM(
        IF(
          error_code IN ('CONNECTION_ERROR','INTERNAL_ERROR'),
          total_requests,
          0)) AS server_error,
      SUM(IF(error_code IS NULL, 0, total_requests)) AS total_error,
    FROM
      `region-us`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    GROUP BY
      start_timestamp
    ORDER BY
      start_timestamp DESC;
    

    The result is similar to the following:

    +---------------------+----------------+------------+-------------------+-------------+------------+--------------+-------------+
    |   start_timestamp   | total_requests | total_rows | total_input_bytes | quota_error | user_error | server_error | total_error |
    +---------------------+----------------+------------+-------------------+-------------+------------+--------------+-------------+
    | 2020-04-15 22:00:00 |         441854 |     441854 |       23784853118 |           0 |          0 |           17 |          17 |
    | 2020-04-15 21:59:00 |         355627 |     355627 |       26101982742 |           0 |          0 |            0 |           0 |
    | 2020-04-15 21:58:00 |         354603 |     354603 |       26160565341 |           0 |          0 |            0 |           0 |
    | 2020-04-15 21:57:00 |         298823 |     298823 |       23877821442 |           0 |          0 |            0 |           0 |
    +---------------------+----------------+------------+-------------------+-------------+------------+--------------+-------------+
    
    Example 3: Tables with the most incoming traffic

    The following example returns the streaming statistics for the 10 tables with the most incoming traffic:

    SELECT
      project_id,
      dataset_id,
      table_id,
      SUM(total_rows) AS num_rows,
      SUM(total_input_bytes) AS num_bytes,
      SUM(total_requests) AS num_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    GROUP BY
      project_id,
      dataset_id,
      table_id
    ORDER BY
      num_bytes DESC
    LIMIT 10;
    

    The result is similar to the following:

    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    |      project_id      | dataset_id |           table_id            |  num_rows  |   num_bytes    | num_requests |
    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    | my-project           | dataset1   | table1                        | 8016725532 | 73787301876979 |   8016725532 |
    | my-project           | dataset1   | table2                        |   26319580 | 34199853725409 |     26319580 |
    | my-project           | dataset2   | table1                        |   38355294 | 22879180658120 |     38355294 |
    | my-project           | dataset1   | table3                        |  270126906 | 17594235226765 |    270126906 |
    | my-project           | dataset2   | table2                        |   95511309 | 17376036299631 |     95511309 |
    | my-project           | dataset2   | table3                        |   46500443 | 12834920497777 |     46500443 |
    | my-project           | dataset2   | table4                        |   25846270 |  7487917957360 |     25846270 |
    | my-project           | dataset1   | table4                        |   18318404 |  5665113765882 |     18318404 |
    | my-project           | dataset1   | table5                        |   42829431 |  5343969665771 |     42829431 |
    | my-project           | dataset1   | table6                        |    8771021 |  5119004622353 |      8771021 |
    +----------------------+------------+-------------------------------+------------+----------------+--------------+
    
    Example 4: Streaming error ratio for a table

    The following example calculates a per-day breakdown of errors for a specific table, split by error code:

    SELECT
      TIMESTAMP_TRUNC(start_timestamp, DAY) as day,
      project_id,
      dataset_id,
      table_id,
      error_code,
      SUM(total_rows) AS num_rows,
      SUM(total_input_bytes) AS num_bytes,
      SUM(total_requests) AS num_requests
    FROM
      `region-us`.INFORMATION_SCHEMA.STREAMING_TIMELINE_BY_PROJECT
    WHERE
      table_id LIKE 'my_table'
    GROUP BY
      project_id, dataset_id, table_id, error_code, day
    ORDER BY
      day, project_id, dataset_id DESC;
    

    The result is similar to the following:

    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+
    |         day         |  project_id | dataset_id | table_id |   error_code   | num_rows | num_bytes | num_requests |
    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+
    | 2020-04-21 00:00:00 | my_project  | my_dataset | my_table | NULL           |       41 |    252893 |           41 |
    | 2020-04-20 00:00:00 | my_project  | my_dataset | my_table | NULL           |     2798 |  10688286 |         2798 |
    | 2020-04-19 00:00:00 | my_project  | my_dataset | my_table | NULL           |     2005 |   7979495 |         2005 |
    | 2020-04-18 00:00:00 | my_project  | my_dataset | my_table | NULL           |     2054 |   7972378 |         2054 |
    | 2020-04-17 00:00:00 | my_project  | my_dataset | my_table | NULL           |     2056 |   6978079 |         2056 |
    | 2020-04-17 00:00:00 | my_project  | my_dataset | my_table | INTERNAL_ERROR |        4 |     10825 |            4 |
    +---------------------+-------------+------------+----------+----------------+----------+-----------+--------------+