The CREATE MODEL statement for deep neural network (DNN) models
This document describes the CREATE MODEL
statement for creating
deep neural network (DNN)
models in BigQuery. DNN models are built using the
TensorFlow DNNEstimator
estimator. DNN models support
hyperparameter tuning.
For information about the supported SQL statements and functions for each model type, see End-to-end user journey for each model.
CREATE MODEL
syntax
{CREATE MODEL | CREATE MODEL IF NOT EXISTS | CREATE OR REPLACE MODEL} model_name OPTIONS(model_option_list) AS query_statement model_option_list: MODEL_TYPE = { 'DNN_CLASSIFIER' | 'DNN_REGRESSOR' } [, LEARN_RATE = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, OPTIMIZER = { { 'ADAGRAD' | 'ADAM' | 'FTRL' | 'RMSPROP' | 'SGD' } | HPARAM_CANDIDATES([candidates]) } ] [, L1_REG = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, L2_REG = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, ACTIVATION_FN = { { 'RELU' | 'RELU6' | 'CRELU' | 'ELU' | 'SELU' | 'SIGMOID' | 'TANH' } | HPARAM_CANDIDATES([candidates]) } ] [, BATCH_SIZE = { int64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, DROPOUT = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, HIDDEN_UNITS = { int_array | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) } ] [, INTEGRATED_GRADIENTS_NUM_STEPS = int64_value ] [, TF_VERSION = { '1.15' | '2.8.0' } ] [, AUTO_CLASS_WEIGHTS = { TRUE | FALSE } ] [, CLASS_WEIGHTS = struct_array ] [, ENABLE_GLOBAL_EXPLAIN = { TRUE | FALSE } ] [, EARLY_STOP = { TRUE | FALSE } ] [, MIN_REL_PROGRESS = float64_value ] [, INPUT_LABEL_COLS = string_array ] [, MAX_ITERATIONS = int64_value ] [, WARM_START = { TRUE | FALSE } ] [, DATA_SPLIT_METHOD = { 'AUTO_SPLIT' | 'RANDOM' | 'CUSTOM' | 'SEQ' | 'NO_SPLIT' } ] [, DATA_SPLIT_EVAL_FRACTION = float64_value ] [, DATA_SPLIT_TEST_FRACTION = float64_value ] [, DATA_SPLIT_COL = string_value ] [, NUM_TRIALS = int64_value ] [, MAX_PARALLEL_TRIALS = int64_value ] [, HPARAM_TUNING_ALGORITHM = { 'VIZIER_DEFAULT' | 'RANDOM_SEARCH' | 'GRID_SEARCH' } ] [, HPARAM_TUNING_OBJECTIVES = { 'ROC_AUC' | 'R2_SCORE' | ... } ]
CREATE MODEL
Creates and trains a new model in the specified dataset. If the model name
exists, CREATE MODEL
returns an error.
CREATE MODEL IF NOT EXISTS
Creates and trains a new model only if the model doesn't exist in the specified dataset.
CREATE OR REPLACE MODEL
Creates and trains a model and replaces an existing model with the same name in the specified dataset.
model_name
The name of the model you're creating or replacing. The model name must be unique in the dataset: no other model or table can have the same name. The model name must follow the same naming rules as a BigQuery table. A model name can:
- Contain up to 1,024 characters
- Contain letters (upper or lower case), numbers, and underscores
model_name
is not case-sensitive.
If you don't have a default project configured, then you must prepend the project ID to the model name in the following format, including backticks:
`[PROJECT_ID].[DATASET].[MODEL]`
For example, `myproject.mydataset.mymodel`.
MODEL_TYPE
Syntax
MODEL_TYPE = { 'DNN_CLASSIFIER' | 'DNN_REGRESSOR' }
Description
Specifies the model type. This option is required.
LEARN_RATE
Syntax
LEARN_RATE = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) }
Description
The initial learn rate for training.
Arguments
If you aren't running hyperparameter tuning, then you can specify a
FLOAT64
value. The default value is 0.001
.
If you are running hyperparameter tuning, use one of the following options:
- Use the
HPARAM_RANGE
keyword and specify twoFLOAT64
values that define the range to use for the hyperparameter. For example,LEARN_RATE = HPARAM_RANGE(0.001, 0.005)
. - Use the
HPARAM_CANDIDATES
keyword and specify an array ofFLOAT64
values to provide discrete values to use for the hyperparameter. For example,LEARN_RATE = HPARAM_CANDIDATES([0, 0.001, 0.01, 0.1])
.
When running hyperparameter tuning, the valid range is [0, 1.0]
, the
default range is [0, 1.0]
, and the scale type is LINEAR
.
OPTIMIZER
Syntax
OPTIMIZER = { { 'ADAGRAD' | 'ADAM' | 'FTRL' | 'RMSPROP' | 'SGD' } | HPARAM_CANDIDATES([candidates]) }
Description
The optimizer for training the model.
Arguments
This option accepts the following values:
ADAM
— Implements the Adam algorithm. This is the default.ADAGRAD
— Implements the Adagrad algorithmFTRL
— Implements the FTRL algorithmRMSPROP
— Implements the RMSProp algorithmSGD
— Implements the gradient descent algorithm
If you are running hyperparameter training, you can provide more than one
value for this option by using HPARAM_CANDIDATES
and specifying an array.
For example, OPTIMIZER = HPARAM_CANDIDATES(['ADAM', 'FTRL', 'SGD'])
.
L1_REG
Syntax
L1_REG = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) }
Description
The L1 regularization strength of the OPTIMIZER
. You can only use
this option when OPTIMIZER
is set to one of the following values:
ADAGRAD
— Implements the ProximalAdagradOptimizer algorithmFTRL
— Implements the FtrlOptimizer algorithmSGD
— Implements the ProximalGradientDescentOptimizer algorithm
Arguments
If you aren't running hyperparameter tuning, then you can specify a
FLOAT64
value. The default value is 0
.
If you are running hyperparameter tuning, then you can use one of the following options:
- The
HPARAM_RANGE
keyword and twoFLOAT64
values that define the range to use for the hyperparameter. For example,L1_REG = HPARAM_RANGE(0, 5.0)
. - The
HPARAM_CANDIDATES
keyword and an array ofFLOAT64
values that provide discrete values to use for the hyperparameter. For example,L1_REG = HPARAM_CANDIDATES([0, 1.0, 3.0, 5.0])
.
When running hyperparameter tuning, the valid range is
(0, ∞)
, the default range is (0, 10.0]
, and the scale
type is LOG
.
L2_REG
Syntax
L2_REG = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) }
Description
The L2 regularization strength of the OPTIMIZER
. You can only
use this option when OPTIMIZER
is set to one of the following values:
ADAGRAD
— Implements the ProximalAdagradOptimizer algorithmFTRL
— Implements the FtrlOptimizer algorithmSGD
— Implements the ProximalGradientDescentOptimizer algorithm
Arguments
If you aren't running hyperparameter tuning, then you can specify a
FLOAT64
value. The default value is 0
.
If you are running hyperparameter tuning, then you can use one of the following options:
- The
HPARAM_RANGE
keyword and twoFLOAT64
values that define the range to use for the hyperparameter. For example,L2_REG = HPARAM_RANGE(1.5, 5.0)
. - The
HPARAM_CANDIDATES
keyword and an array ofFLOAT64
values that provide discrete values to use for the hyperparameter. For example,L2_REG = HPARAM_CANDIDATES([0, 1.0, 3.0, 5.0])
.
When running hyperparameter tuning, the valid range is (0, ∞)
, the
default range is (0, 10.0]
, and the scale type is LOG
.
ACTIVATION_FN
Syntax
ACTIVATION_FN = { { 'RELU' | 'RELU6' | 'CRELU' | 'ELU' | 'SELU' | 'SIGMOID' | 'TANH' } | HPARAM_CANDIDATES([candidates]) }
Description
The activation function of the neural network.
Arguments
This option accepts the following values:
RELU
— Rectified linear. This is the default.RELU6
— Rectified linear 6CRELU
— Concatenated ReLUELU
— Exponential linearSELU
— Scaled exponential linearSIGMOID
— Sigmoid activationTANH
— Tanh activation
If you are running hyperparameter training, then you can provide more than one
value for this option by using HPARAM_CANDIDATES
and specifying an array.
For example, ACTIVATION_FN = HPARAM_CANDIDATES(['RELU', 'RELU6', 'TANH'])
.
BATCH_SIZE
Syntax
BATCH_SIZE = { int64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) }
Description
The mini batch size of samples that are fed to the neural network.
Arguments
If you aren't running hyperparameter tuning, specify an INT64
value that
is positive and is less than or equal to 8192
. The default value is 32
or the number of samples, whichever is smaller.
If you are running hyperparameter tuning, use one of the following options:
- The
HPARAM_RANGE
keyword and twoFLOAT64
values that define the range to use for the hyperparameter. For example,BATCH_SIZE = HPARAM_RANGE(16, 64)
. - The
HPARAM_CANDIDATES
keyword and an array ofFLOAT64
values that provide discrete values to use for the hyperparameter. For example,BATCH_SIZE = HPARAM_CANDIDATES([32, 64, 256, 1024])
.
When running hyperparameter tuning, the valid range is (0, ∞)
,
the default range is [16, 1024]
, and the scale type is LOG
.
DROPOUT
Syntax
DROPOUT = { float64_value | HPARAM_RANGE(range) | HPARAM_CANDIDATES([candidates]) }
Description
The dropout rate of units in the neural network.
Arguments
If you aren't running hyperparameter tuning, then you can specify a FLOAT64
value that is positive and is less than or equal to 1.0
. The default value is
0
.
If you are running hyperparameter tuning, then you must use one of the following options:
- The
HPARAM_RANGE
keyword and twoFLOAT64
values that define the range to use for the hyperparameter. For example,DROPOUT = HPARAM_RANGE(0, 0.6)
. - The
HPARAM_CANDIDATES
keyword and an array ofFLOAT64
values that provide discrete values to use for the hyperparameter. For example,DROPOUT = HPARAM_CANDIDATES([0.1, 0.3, 0.6])
.
When running hyperparameter tuning, the valid range is [0, 1.0)
, the
default range is [0, 0.8]
, and the scale type is LINEAR
.
HIDDEN_UNITS
Syntax
HIDDEN_UNITS = { int_array | HPARAM_CANDIDATES([candidates]) }
Description
The hidden layers of the neural network.
Arguments
An array of integers that represents the architecture of the hidden layers. If
not specified, BigQuery ML applies a single hidden layer that
contains no more than 128 units. The number of units is calculated as [min(128,
num_samples / (10 * (num_input_units + num_output_units)))]
. The upper bound of
the rule ensures that the model isn't over fitting.
The number in the middle of the array defines the shape of the latent space. For
example, hidden_units=[128, 64, 4, 64, 128]
defines a four-dimensional latent
space.
The number of layers in hidden_units
must be odd, and we recommend that the
sequence be symmetrical.
The following example defines a model architecture that uses three hidden layers with 256, 128, and 64 nodes, respectively.
HIDDEN_UNITS = [256, 128, 64]
If you are running hyperparameter tuning, then you must use the
HPARAM_CANDIDATES
keyword and specify an array in the form
ARRAY<STRUCT<ARRAY<INT64>>>
to provide discrete values to use for the
hyperparameter. Each struct value in the outer array represents a candidate
neural architecture. The array of INT64
values in each struct represents a
hidden layer.
The following example represents a neural architecture search with three candidates, which include a single layer of 8 neurons, two layers of neurons with 8 and 16 in sequence, and three layers of neurons with 16, 32 and 64 in sequence, respectively.
hidden_units=hparam_candidates([struct([8]), struct([8, 16]), struct([16, 32, 64])])
The valid range for the INT64
arrays is [1, ∞)
.
INTEGRATED_GRADIENTS_NUM_STEPS
Syntax
INTEGRATED_GRADIENTS_NUM_STEPS = int64_value
Description
Specifies the number of steps to sample between the example being explained and its baseline for approximating the integral when using integrated gradients attribution methods.
Arguments
An INT64
value that is less than or equal to 30
and greater than 0
. The
default value is 15
.
You can only set this option if ENABLE_GLOBAL_EXPLAIN
is TRUE
.
TF_VERSION
Syntax
TF_VERSION = { '1.15' | '2.8.0' }
Description
Specifies the TensorFlow version for model training. The default
value is 1.15
.
Set TF_VERSION
to 2.8.0
to use TensorFlow2 with the Keras API.
AUTO_CLASS_WEIGHTS
Syntax
AUTO_CLASS_WEIGHTS = { TRUE | FALSE }
Description
Determines whether to balance class labels by using weights for each class in inverse proportion to the frequency of that class.
Only use this option with classifier models.
By default, the training data used to create the model is unweighted. If the labels in the training data are imbalanced, the model might learn to predict the most popular class of labels more heavily, which you might not want.
To balance every class, set this option to TRUE
. Balance is
accomplished using the following formula:
total_input_rows / (input_rows_for_class_n * number_of_unique_classes)
Arguments
A BOOL
value. The default value is FALSE
.
CLASS_WEIGHTS
Syntax
CLASS_WEIGHTS = struct_array
Description
The weights to use for each class label. You can't specify this option if
AUTO_CLASS_WEIGHTS
is TRUE
.
Arguments
An ARRAY
of STRUCT
values. Each STRUCT
contains a
STRING
value that specifies the class label and a FLOAT64
value that
specifies the weigh