Panoramica delle transazioni

Questa pagina illustra le transazioni in Spanner e include codice di esempio per l'esecuzione delle transazioni.

Introduzione

Una transazione in Spanner è un insieme di letture e scritture che vengono eseguite in modo atomico in un singolo punto logico nel tempo su colonne, righe e tabelle di un database.

Spanner supporta queste modalità di transazione:

  • Blocco lettura/scrittura. Queste transazioni si basano su blocchi pessimistici e, se necessario, su commit a due fasi. Il blocco delle transazioni di lettura/scrittura potrebbe essere interrotto, richiedono all'applicazione di riprovare.

  • Sola lettura. Questo tipo di transazione offre coerenza garantita tra diverse letture, ma non consente scritture. Per impostazione predefinita, le transazioni di sola lettura vengono eseguite in base a un timestamp scelto dal sistema che garantisce la coerenza esterna, ma possono anche essere configurate per la lettura in base a un timestamp passato. Le transazioni di sola lettura non devono essere confermate e non richiedono blocchi. Inoltre, le transazioni di sola lettura potrebbero attendere il completamento delle scritture in corso prima di essere eseguite.

  • DML partizionato. Questo tipo di transazione esegue un'istruzione Data Manipulation Language (DML) come DML partizionata. Il DML partizionato è progettato per aggiornamenti ed eliminazioni collettivi, in particolare per la pulizia e il backfill periodici. Se devi eseguire il commit scritture cieche, ma non richiedono una transazione atomica, puoi eseguire modifiche collettive e scrivere in batch. Per ulteriori informazioni, consulta la sezione Modificare i dati utilizzando le scritture collettive.

Questa pagina descrive le proprietà generali e la semantica delle transazioni in Spanner e introduce il DML partizionato, di sola lettura e lettura di transazioni in Spanner.

Transazioni di lettura/scrittura

Di seguito sono riportati gli scenari in cui è consigliabile utilizzare una transazione di lettura/scrittura con blocco:

  • Se esegui una scrittura che dipende dal risultato di una o più letture, devi eseguire la scrittura e le letture nella stessa transazione di lettura/scrittura.
    • Esempio: il doppio del saldo del conto bancario A. La lettura del saldo di A deve essere nella stessa transazione della scrittura per sostituire il saldo con il valore raddoppiato.

  • Se esegui una o più scritture che devono essere eseguite atomicamente, eseguire queste scritture nella stessa transazione di lettura/scrittura.
    • Esempio: trasferisci 200 € dall'account A all'account B. Entrambe le scritture (una per diminuire A di 200 $ e una per aumentare B di 200 $) e le letture dei saldi iniziali degli account devono trovarsi nella stessa transazione.

  • Se potresti eseguire una o più scritture, a seconda dei risultati di una o più letture, devi eseguire queste scritture e letture nella stessa transazione di lettura/scrittura, anche se le scritture non vengono eseguite.
    • Esempio: trasferisci 200 $dal conto bancario A al conto B se è A il saldo attuale è superiore a 500 $. La transazione deve contenere una lettura del saldo di A e un'istruzione condizionale che contenga le scritture.

Ecco uno scenario in cui non dovresti utilizzare un sistema di lettura e scrittura di blocco transazione:

  • Se esegui solo letture e puoi esprimere la lettura utilizzando un metodo di lettura singola, devi utilizzare il singolo metodo di lettura o una transazione di sola lettura. Le letture singole non vengono bloccate, diversamente dalle transazioni di lettura/scrittura.

Proprietà

Una transazione di lettura/scrittura in Spanner esegue un insieme di operazioni di lettura e scrittura atomicamente in un singolo punto logico nel tempo. Inoltre, il timestamp at le transazioni di lettura/scrittura eseguite corrispondono alle ore effettive, l'ordine di serializzazione corrisponde all'ordine del timestamp.

Perché utilizzare una transazione di lettura/scrittura? Le transazioni di lettura/scrittura forniscono le proprietà ACID dei database relazionali (infatti, le transazioni di lettura/scrittura di Spanner offrono garanzie ancora più solide rispetto all'ACID tradizionale; consulta la sezione Semantica di seguito).

Isolamento

Di seguito sono riportate le proprietà di isolamento per le transazioni di lettura/scrittura e di sola lettura.

Transazioni di lettura e scrittura

Ecco le proprietà di isolamento che ottieni dopo il commit di una transazione che contiene una serie di letture (o query) e scritture:

  • Tutte le letture all'interno della transazione hanno restituito valori che riflettono uno snapshot coerente acquisito al timestamp di commit della transazione.
  • Le righe o gli intervalli vuoti sono rimasti tali al momento del commit.
  • Tutte le scritture all'interno della transazione sono state impegnate a livello di di commit.
  • Le scritture non erano visibili in nessuna transazione prima della transazione impegnato.

Alcuni driver client Spanner contengono logica per i nuovi tentativi delle transazioni da mascherare errori temporanei, che si verificano eseguendo di nuovo la transazione e convalidando osservati dal cliente.

Il risultato è che tutte le operazioni di lettura e scrittura sembrano essere avvenute in un singolo momento specifico, sia dal punto di vista della transazione stessa sia il punto di vista di altri lettori e scrittori al database Spanner. Nella altre parole, le letture e le scritture finiscono per verificarsi allo stesso timestamp (per un'illustrazione, consulta la sezione Serializzabilità e coerenza di seguito).

Transazioni di sola lettura

Le garanzie di una transazione di lettura/scrittura che si limitano a operazioni di lettura sono simili: le letture all'interno della transazione restituiscono i dati dello stesso timestamp, anche per le righe inesistente. Una differenza è che se leggi i dati e poi esegui il commit della transazione di lettura/scrittura senza scritture, non è garantito che i dati non siano cambiati nel database dopo la lettura e prima del commit. Se vuoi sapere se i dati sono cambiati dall'ultima lettura, l'approccio migliore è leggerli di nuovo (in una transazione di lettura/scrittura o utilizzando una lettura sicura). Inoltre, per motivi di efficienza, se sai in anticipo che leggerai solo e non scriverai, devi utilizzare una transazione di sola lettura anziché una transazione di lettura/scrittura.

Atomicità, coerenza, durabilità

Oltre alla proprietà Isolamento, Spanner offre atomicità (se una delle scritture nella transazione viene eseguita, vengono eseguite tutte), coerenza (il database rimane in uno stato coerente dopo la transazione) e durabilità (i dati committati rimangono tali).

Vantaggi di queste strutture

Grazie a queste proprietà, in qualità di sviluppatore di applicazioni, puoi concentrarti sulla correttezza di ogni transazione singolarmente, senza preoccuparti di come proteggerne l'esecuzione da altre transazioni che potrebbero essere eseguite contemporaneamente.

Interfaccia

Le librerie client di Spanner forniscono un'interfaccia per l'esecuzione di un corpo di lavoro nel contesto di una transazione di lettura/scrittura, con nuovi tentativi di transazione viene interrotto. Ecco un po' di contesto per spiegare questo punto: uno Spanner potrebbe essere necessario provare più volte prima di eseguire il commit. Ad esempio: se due transazioni tentano di lavorare sui dati contemporaneamente in un modo che potrebbe che causa un deadlock, Spanner ne interrompe uno in modo che l'altra transazione possono fare progressi. Più raramente, gli eventi transitori all'interno di Spanner possono provocare l'interruzione di alcune transazioni. Poiché le transazioni sono atomiche, non ha alcun effetto visibile sul database. Pertanto, le transazioni devono essere eseguite tentando di nuovo finché non vanno a buon fine.

Quando utilizzi una transazione in una libreria client Spanner, definisci il corpo di una transazione (ovvero le letture e le scritture da eseguire su una o più tabelle di un database) sotto forma di oggetto funzione. Dietro le quinte, la libreria client di Spanner esegue la funzione ripetutamente fino al commit della transazione o all'incontro di un errore non ripetibile.

Esempio

Supponiamo che tu abbia aggiunto una colonna MarketingBudget alla tabella Albums mostrata nella pagina Schema e modello di dati:

CREATE TABLE Albums (
  SingerId        INT64 NOT NULL,
  AlbumId         INT64 NOT NULL,
  AlbumTitle      STRING(MAX),
  MarketingBudget INT64
) PRIMARY KEY (SingerId, AlbumId);

Il reparto marketing decide di fare una spinta di marketing per l'album associato a Albums (1, 1) e ti chiede di trasferire 200.000 $ dal budget di Albums (2, 2), ma solo se i fondi sono disponibili nel budget dell'album. Dovresti utilizza una transazione di lettura/scrittura di blocco per questa operazione, poiché la transazione che potrebbero eseguire scritture a seconda del risultato di una lettura.

Di seguito viene mostrato come eseguire una transazione di lettura/scrittura:

C++

void ReadWriteTransaction(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  using ::google::cloud::StatusOr;

  // A helper to read a single album MarketingBudget.
  auto get_current_budget =
      [](spanner::Client client, spanner::Transaction txn,
         std::int64_t singer_id,
         std::int64_t album_id) -> StatusOr<std::int64_t> {
    auto key = spanner::KeySet().AddKey(spanner::MakeKey(singer_id, album_id));
    auto rows = client.Read(std::move(txn), "Albums", std::move(key),
                            {"MarketingBudget"});
    using RowType = std::tuple<std::int64_t>;
    auto row = spanner::GetSingularRow(spanner::StreamOf<RowType>(rows));
    if (!row) return std::move(row).status();
    return std::get<0>(*std::move(row));
  };

  auto commit = client.Commit(
      [&client, &get_current_budget](
          spanner::Transaction const& txn) -> StatusOr<spanner::Mutations> {
        auto b1 = get_current_budget(client, txn, 1, 1);
        if (!b1) return std::move(b1).status();
        auto b2 = get_current_budget(client, txn, 2, 2);
        if (!b2) return std::move(b2).status();
        std::int64_t transfer_amount = 200000;

        return spanner::Mutations{
            spanner::UpdateMutationBuilder(
                "Albums", {"SingerId", "AlbumId", "MarketingBudget"})
                .EmplaceRow(1, 1, *b1 + transfer_amount)
                .EmplaceRow(2, 2, *b2 - transfer_amount)
                .Build()};
      });

  if (!commit) throw std::move(commit).status();
  std::cout << "Transfer was successful [spanner_read_write_transaction]\n";
}

C#


using Google.Cloud.Spanner.Data;
using System;
using System.Threading.Tasks;
using System.Transactions;

public class ReadWriteWithTransactionAsyncSample
{
    public async Task<int> ReadWriteWithTransactionAsync(string projectId, string instanceId, string databaseId)
    {
        // This sample transfers 200,000 from the MarketingBudget
        // field of the second Album to the first Album. Make sure to run
        // the Add Column and Write Data To New Column samples first,
        // in that order.

        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";

        using TransactionScope scope = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);
        decimal transferAmount = 200000;
        decimal secondBudget = 0;
        decimal firstBudget = 0;

        using var connection = new SpannerConnection(connectionString);
        using var cmdLookup1 = connection.CreateSelectCommand("SELECT * FROM Albums WHERE SingerId = 2 AND AlbumId = 2");

        using (var reader = await cmdLookup1.ExecuteReaderAsync())
        {
            while (await reader.ReadAsync())
            {
                // Read the second album's budget.
                secondBudget = reader.GetFieldValue<decimal>("MarketingBudget");
                // Confirm second Album's budget is sufficient and
                // if not raise an exception. Raising an exception
                // will automatically roll back the transaction.
                if (secondBudget < transferAmount)
                {
                    throw new Exception($"The second album's budget {secondBudget} is less than the amount to transfer.");
                }
            }
        }

        // Read the first album's budget.
        using var cmdLookup2 = connection.CreateSelectCommand("SELECT * FROM Albums WHERE SingerId = 1 and AlbumId = 1");
        using (var reader = await cmdLookup2.ExecuteReaderAsync())
        {
            while (await reader.ReadAsync())
            {
                firstBudget = reader.GetFieldValue<decimal>("MarketingBudget");
            }
        }

        // Specify update command parameters.
        using var cmdUpdate = connection.CreateUpdateCommand("Albums", new SpannerParameterCollection
        {
            { "SingerId", SpannerDbType.Int64 },
            { "AlbumId", SpannerDbType.Int64 },
            { "MarketingBudget", SpannerDbType.Int64 },
        });

        // Update second album to remove the transfer amount.
        secondBudget -= transferAmount;
        cmdUpdate.Parameters["SingerId"].Value = 2;
        cmdUpdate.Parameters["AlbumId"].Value = 2;
        cmdUpdate.Parameters["MarketingBudget"].Value = secondBudget;
        var rowCount = await cmdUpdate.ExecuteNonQueryAsync();

        // Update first album to add the transfer amount.
        firstBudget += transferAmount;
        cmdUpdate.Parameters["SingerId"].Value = 1;
        cmdUpdate.Parameters["AlbumId"].Value = 1;
        cmdUpdate.Parameters["MarketingBudget"].Value = firstBudget;
        rowCount += await cmdUpdate.ExecuteNonQueryAsync();
        scope.Complete();
        Console.WriteLine("Transaction complete.");
        return rowCount;
    }
}

Vai


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
)

func writeWithTransaction(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	_, err = client.ReadWriteTransaction(ctx, func(ctx context.Context, txn *spanner.ReadWriteTransaction) error {
		getBudget := func(key spanner.Key) (int64, error) {
			row, err := txn.ReadRow(ctx, "Albums", key, []string{"MarketingBudget"})
			if err != nil {
				return 0, err
			}
			var budget int64
			if err := row.Column(0, &budget); err != nil {
				return 0, err
			}
			return budget, nil
		}
		album2Budget, err := getBudget(spanner.Key{2, 2})
		if err != nil {
			return err
		}
		const transferAmt = 200000
		if album2Budget >= transferAmt {
			album1Budget, err := getBudget(spanner.Key{1, 1})
			if err != nil {
				return err
			}
			album1Budget += transferAmt
			album2Budget -= transferAmt
			cols := []string{"SingerId", "AlbumId", "MarketingBudget"}
			txn.BufferWrite([]*spanner.Mutation{
				spanner.Update("Albums", cols, []interface{}{1, 1, album1Budget}),
				spanner.Update("Albums", cols, []interface{}{2, 2, album2Budget}),
			})
			fmt.Fprintf(w, "Moved %d from Album2's MarketingBudget to Album1's.", transferAmt)
		}
		return nil
	})
	return err
}

Java

static void writeWithTransaction(DatabaseClient dbClient) {
  dbClient
      .readWriteTransaction()
      .run(transaction -> {
        // Transfer marketing budget from one album to another. We do it in a transaction to
        // ensure that the transfer is atomic.
        Struct row =
            transaction.readRow("Albums", Key.of(2, 2), Arrays.asList("MarketingBudget"));
        long album2Budget = row.getLong(0);
        // Transaction will only be committed if this condition still holds at the time of
        // commit. Otherwise it will be aborted and the callable will be rerun by the
        // client library.
        long transfer = 200000;
        if (album2Budget >= transfer) {
          long album1Budget =
              transaction
                  .readRow("Albums", Key.of(1, 1), Arrays.asList("MarketingBudget"))
                  .getLong(0);
          album1Budget += transfer;
          album2Budget -= transfer;
          transaction.buffer(
              Mutation.newUpdateBuilder("Albums")
                  .set("SingerId")
                  .to(1)
                  .set("AlbumId")
                  .to(1)
                  .set("MarketingBudget")
                  .to(album1Budget)
                  .build());
          transaction.buffer(
              Mutation.newUpdateBuilder("Albums")
                  .set("SingerId")
                  .to(2)
                  .set("AlbumId")
                  .to(2)
                  .set("MarketingBudget")
                  .to(album2Budget)
                  .build());
        }
        return null;
      });
}

Node.js

// This sample transfers 200,000 from the MarketingBudget field
// of the second Album to the first Album, as long as the second
// Album has enough money in its budget. Make sure to run the
// addColumn and updateData samples first (in that order).

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

const transferAmount = 200000;

database.runTransaction(async (err, transaction) => {
  if (err) {
    console.error(err);
    return;
  }
  let firstBudget, secondBudget;
  const queryOne = {
    columns: ['MarketingBudget'],
    keys: [[2, 2]], // SingerId: 2, AlbumId: 2
  };

  const queryTwo = {
    columns: ['MarketingBudget'],
    keys: [[1, 1]], // SingerId: 1, AlbumId: 1
  };

  Promise.all([
    // Reads the second album's budget
    transaction.read('Albums', queryOne).then(results => {
      // Gets second album's budget
      const rows = results[0].map(row => row.toJSON());
      secondBudget = rows[0].MarketingBudget;
      console.log(`The second album's marketing budget: ${secondBudget}`);

      // Makes sure the second album's budget is large enough
      if (secondBudget < transferAmount) {
        throw new Error(
          `The second album's budget (${secondBudget}) is less than the transfer amount (${transferAmount}).`
        );
      }
    }),

    // Reads the first album's budget
    transaction.read('Albums', queryTwo).then(results => {
      // Gets first album's budget
      const rows = results[0].map(row => row.toJSON());
      firstBudget = rows[0].MarketingBudget;
      console.log(`The first album's marketing budget: ${firstBudget}`);
    }),
  ])
    .then(() => {
      console.log(firstBudget, secondBudget);
      // Transfers the budgets between the albums
      firstBudget += transferAmount;
      secondBudget -= transferAmount;

      console.log(firstBudget, secondBudget);

      // Updates the database
      // Note: Cloud Spanner interprets Node.js numbers as FLOAT64s, so they
      // must be converted (back) to strings before being inserted as INT64s.
      transaction.update('Albums', [
        {
          SingerId: '1',
          AlbumId: '1',
          MarketingBudget: firstBudget.toString(),
        },
        {
          SingerId: '2',
          AlbumId: '2',
          MarketingBudget: secondBudget.toString(),
        },
      ]);
    })
    .then(() => {
      // Commits the transaction and send the changes to the database
      return transaction.commit();
    })
    .then(() => {
      console.log(
        `Successfully executed read-write transaction to transfer ${transferAmount} from Album 2 to Album 1.`
      );
    })
    .catch(err => {
      console.error('ERROR:', err);
    })
    .then(() => {
      transaction.end();
      // Closes the database when finished
      return database.close();
    });
});

PHP

use Google\Cloud\Spanner\SpannerClient;
use Google\Cloud\Spanner\Transaction;
use UnexpectedValueException;

/**
 * Performs a read-write transaction to update two sample records in the
 * database.
 *
 * This will transfer 200,000 from the `MarketingBudget` field for the second
 * Album to the first Album. If the `MarketingBudget` for the second Album is
 * too low, it will raise an exception.
 *
 * Before running this sample, you will need to run the `update_data` sample
 * to populate the fields.
 * Example:
 * ```
 * read_write_transaction($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_write_transaction(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $database->runTransaction(function (Transaction $t) use ($spanner) {
        $transferAmount = 200000;

        // Read the second album's budget.
        $secondAlbumKey = [2, 2];
        $secondAlbumKeySet = $spanner->keySet(['keys' => [$secondAlbumKey]]);
        $secondAlbumResult = $t->read(
            'Albums',
            $secondAlbumKeySet,
            ['MarketingBudget'],
            ['limit' => 1]
        );

        $firstRow = $secondAlbumResult->rows()->current();
        $secondAlbumBudget = $firstRow['MarketingBudget'];
        if ($secondAlbumBudget < $transferAmount) {
            // Throwing an exception will automatically roll back the transaction.
            throw new UnexpectedValueException(
                'The second album\'s budget is lower than the transfer amount: ' . $transferAmount
            );
        }

        $firstAlbumKey = [1, 1];
        $firstAlbumKeySet = $spanner->keySet(['keys' => [$firstAlbumKey]]);
        $firstAlbumResult = $t->read(
            'Albums',
            $firstAlbumKeySet,
            ['MarketingBudget'],
            ['limit' => 1]
        );

        // Read the first album's budget.
        $firstRow = $firstAlbumResult->rows()->current();
        $firstAlbumBudget = $firstRow['MarketingBudget'];

        // Update the budgets.
        $secondAlbumBudget -= $transferAmount;
        $firstAlbumBudget += $transferAmount;
        printf('Setting first album\'s budget to %s and the second album\'s ' .
            'budget to %s.' . PHP_EOL, $firstAlbumBudget, $secondAlbumBudget);

        // Update the rows.
        $t->updateBatch('Albums', [
            ['SingerId' => 1, 'AlbumId' => 1, 'MarketingBudget' => $firstAlbumBudget],
            ['SingerId' => 2, 'AlbumId' => 2, 'MarketingBudget' => $secondAlbumBudget],
        ]);

        // Commit the transaction!
        $t->commit();

        print('Transaction complete.' . PHP_EOL);
    });
}

Python

def read_write_transaction(instance_id, database_id):
    """Performs a read-write transaction to update two sample records in the
    database.

    This will transfer 200,000 from the `MarketingBudget` field for the second
    Album to the first Album. If the `MarketingBudget` is too low, it will
    raise an exception.

    Before running this sample, you will need to run the `update_data` sample
    to populate the fields.
    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    def update_albums(transaction):
        # Read the second album budget.
        second_album_keyset = spanner.KeySet(keys=[(2, 2)])
        second_album_result = transaction.read(
            table="Albums",
            columns=("MarketingBudget",),
            keyset=second_album_keyset,
            limit=1,
        )
        second_album_row = list(second_album_result)[0]
        second_album_budget = second_album_row[0]

        transfer_amount = 200000

        if second_album_budget < transfer_amount:
            # Raising an exception will automatically roll back the
            # transaction.
            raise ValueError("The second album doesn't have enough funds to transfer")

        # Read the first album's budget.
        first_album_keyset = spanner.KeySet(keys=[(1, 1)])
        first_album_result = transaction.read(
            table="Albums",
            columns=("MarketingBudget",),
            keyset=first_album_keyset,
            limit=1,
        )
        first_album_row = list(first_album_result)[0]
        first_album_budget = first_album_row[0]

        # Update the budgets.
        second_album_budget -= transfer_amount
        first_album_budget += transfer_amount
        print(
            "Setting first album's budget to {} and the second album's "
            "budget to {}.".format(first_album_budget, second_album_budget)
        )

        # Update the rows.
        transaction.update(
            table="Albums",
            columns=("SingerId", "AlbumId", "MarketingBudget"),
            values=[(1, 1, first_album_budget), (2, 2, second_album_budget)],
        )

    database.run_in_transaction(update_albums)

    print("Transaction complete.")

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner         = Google::Cloud::Spanner.new project: project_id
client          = spanner.client instance_id, database_id
transfer_amount = 200_000

client.transaction do |transaction|
  first_album  = transaction.read("Albums", [:MarketingBudget], keys: [[1, 1]]).rows.first
  second_album = transaction.read("Albums", [:MarketingBudget], keys: [[2, 2]]).rows.first

  raise "The second album does not have enough funds to transfer" if second_album[:MarketingBudget] < transfer_amount

  new_first_album_budget  = first_album[:MarketingBudget] + transfer_amount
  new_second_album_budget = second_album[:MarketingBudget] - transfer_amount

  transaction.update "Albums", [
    { SingerId: 1, AlbumId: 1, MarketingBudget: new_first_album_budget  },
    { SingerId: 2, AlbumId: 2, MarketingBudget: new_second_album_budget }
  ]
end

puts "Transaction complete"

Semantica

Serializzabilità e coerenza esterna

Spanner offre la "serializzabilità", il che significa che tutte le transazioni sembrano essere state eseguite in un ordine seriale, anche se alcune letture, scritture e altre operazioni di transazioni distinte sono effettivamente avvenute in parallelo. Spanner assegna timestamp dei commit che riflettono l'ordine delle transazioni committate per implementare questa proprietà. Di fatto, Spanner offre una maggiore garanzia rispetto alla serializzabilità, chiamata coerenza esterna: le transazioni si impegnano in un ordine che si riflette nei relativi timestamp di commit e questi I timestamp riflettono il tempo reale, quindi puoi confrontarli con il tuo smartwatch. Legge in transazione vedrà tutti gli elementi di cui è stato eseguito il commit prima della transazione i commit e le scritture sono visibili da tutto ciò che inizia dopo che la transazione impegnato.

Ad esempio, prendi in considerazione l'esecuzione di due transazioni come illustrato nel diagramma di seguito:

sequenza temporale che mostra l&#39;esecuzione
di due transazioni che leggono gli stessi dati

La transazione Txn1 in blu legge alcuni dati A, memorizza nel buffer una scrittura in A, quindi di eseguire il commit. La transazione Txn2 in verde inizia dopo Txn1, legge alcuni dati B, quindi legge i dati A. Poiché Txn2 legge il valore di A dopo che Txn1 ha eseguito il commit della scrittura in A, Txn2 vede l'effetto della scrittura di Txn1 in A, anche se Txn2 è stato avviato prima del completamento di Txn1.

Anche se esiste una certa sovrapposizione temporale in cui Txn1 e Txn2 vengono eseguiti, i relativi timestamp di commit c1 e c2 rispettano un ordine di transazioni lineare, il che significa che tutti gli effetti delle letture e delle scritture di Txn1 sembrano essere avvenuti in un unico punto nel tempo (c1) e tutti gli effetti delle letture e delle scritture di Txn2 sembrano essere avvenuti in un unico punto nel tempo (c2). Inoltre, c1 < c2 (che è garantito perché sia Txn1 che Txn2 hanno eseguito commit delle scritture; questo è vero anche se le scritture sono avvenute su macchine diverse), che rispetta l'ordine di Txn1 che avviene prima di Txn2. Tuttavia, se Txn2 ha eseguito solo letture nella transazione, c1 <= c2.

Le letture osservano un prefisso della cronologia dei commit. Se una lettura vede l'effetto di Txn2, vede anche l'effetto di Txn1. Tutte le transazioni che vengono committate con successo hanno questa proprietà.

Garanzie di lettura e scrittura

Se una chiamata per eseguire una transazione non va a buon fine, le garanzie di lettura e scrittura di cui disponi dipendono dall'errore con cui non è riuscita la chiamata di commit sottostante.

Ad esempio, un errore come "Riga non trovata" o "Riga già esistente" significa che durante la scrittura delle mutazioni presenti nel buffer si è verificato un errore, ad esempio una riga Il client che sta tentando di aggiornare non esiste. In questo caso, le letture sono garantite come coerenti, le scritture non vengono applicate e la non esistenza della riga è garantita come coerente anche con le letture.

Annullamento delle operazioni di transazione

Le operazioni di lettura asincrona possono essere annullate in qualsiasi momento dall'utente (ad es. quando viene annullata un'operazione di livello superiore o decidi di interrompere una lettura in base ai risultati iniziali ricevuti dalla lettura) senza influire su altre operazioni esistenti all'interno della transazione.

Tuttavia, anche se hai tentato di annullare la lettura, Spanner non garantisce che la lettura sia effettivamente annullata. Dopo aver richiesto l'annullamento di una lettura, la lettura può comunque essere completata o non riuscire per un altro motivo (ad es. Abort). Inoltre, questo ha annullato letta potrebbe restituirti alcuni risultati, ma quelli potenzialmente incompleti i risultati verranno convalidati come parte del Commit della transazione.

Tieni presente che, a differenza delle letture, l'annullamento di un'operazione di commit della transazione comporta l'interruzione della transazione (a meno che non sia già stato eseguito il commit della transazione o se non sia riuscita per un altro motivo).

Prestazioni

Chiusura in corso

Spanner consente a più client di interagire contemporaneamente con lo stesso per configurare un database. Per garantire la coerenza di più transazioni contemporaneamente, Spanner utilizza una combinazione di blocchi condivisi e blocchi esclusivi per controllare l'accesso ai dati. Quando esegui una lettura come parte di un durante la transazione, Spanner acquisisce blocchi di lettura condivisi, che consentono ad legge i dati per accedere ai dati finché la transazione non è pronta per il commit. Quando viene eseguito il commit della transazione e vengono applicate le scritture, la transazione tenta di eseguire l'upgrade a un blocco esclusivo. Blocca i nuovi blocchi di lettura condivisi sui dati, attende che quelli esistenti vengano cancellati, quindi inserisce un blocco esclusivo per l'accesso esclusivo ai dati.

Note sulle serrature:

  • I blocchi vengono applicati al livello di granularità di righe e colonne. Se la transazione T1 ha colonna "A" bloccata della riga "foo" e la transazione T2 vuole scrivere la colonna "B" della riga "foo" non ci sono conflitti.
  • Scrive in un dato che non legge anche i dati scritti (noti anche come "ciechi scritture") non sono in conflitto con altri utenti ciechi dello stesso elemento (il commit il timestamp di ogni scrittura determina l'ordine in cui viene applicata database). Di conseguenza, Spanner deve eseguire solo l'upgrade a un blocco esclusivo se hai letto i dati che scrivi. In caso contrario, Spanner utilizza un blocco condiviso chiamato blocco condiviso per gli autori.
  • Quando esegui ricerche di righe all'interno di una transazione di lettura/scrittura, utilizza indici secondari per limitare le righe sottoposti a scansione su un intervallo più piccolo. Questo fa sì che Spanner blocchi un numero inferiore di righe nella tabella, consentendo la modifica simultanea di righe al di fuori di intervallo.
  • Non utilizzare blocchi per garantire l'accesso esclusivo a una risorsa all'esterno di Spanner. Le transazioni possono essere interrotte per diversi motivi: Spanner come, ad esempio, per consentire lo spostamento dei dati all'interno di e le risorse di calcolo dell'istanza. Se viene effettuato un nuovo tentativo di transazione, in modo esplicito dal codice dell'applicazione o implicitamente dal codice client, ad esempio Driver JDBC di Spanner, è che le serrature siano state trattenute durante il tentativo effettivamente commesso.

  • Puoi utilizzare lo strumento di introspezione Statistiche sui blocchi per esaminare i conflitti di blocco nel database.

Rilevamento di deadlock

Spanner rileva quando più transazioni potrebbero essere in stato di deadlock e forza l'interruzione di tutte le transazioni tranne una. Ad esempio, considera lo scenario seguente: la transazione Txn1 contiene un blocco nella registrazione A ed è in attesa per un blocco nella registrazione B e Txn2 tiene un blocco nel registro B ed è in attesa per un blocco nel registro A. L'unico modo per avanzare in questa situazione è interrompere una delle transazioni in modo da rilasciare il blocco e consentire l'avanzamento dell'altra transazione.

Spanner utilizza l'algoritmo standard "wound-wait" per gestire il rilevamento dei deadlock. Spanner tiene traccia dell'età di ogni che richiede blocchi in conflitto. Consente inoltre alle transazioni meno recenti di abortire quelle più recenti (dove "meno recenti" indica che la lettura, la query o il commit più antichi della transazione sono avvenuti prima).

Dando la priorità alle transazioni precedenti, Spanner garantisce che ogni la transazione ha la possibilità di acquisire blocchi alla fine, una volta che diventa obsoleta abbastanza da avere una priorità più alta rispetto ad altre transazioni. Ad esempio, una transazione che acquisisce un blocco condiviso per i lettori può essere interrotta da una transazione precedente che richiede un blocco condiviso per gli autori.

Esecuzione distribuita

Spanner può eseguire transazioni su dati che si estendono su più server. Questo la potenza ha un costo in termini di prestazioni rispetto alle transazioni su singolo server.

Quali tipi di transazioni potrebbero essere distribuite? Dietro le quinte, Spanner può suddividere la responsabilità per le righe del database su più server. Riga A e le righe corrispondenti nelle tabelle con interleaving sono solitamente pubblicate dallo stesso un server web, così come due righe nella stessa tabella con chiavi vicine. Spanner può Eseguire transazioni tra righe su server diversi; tuttavia, come regola Diminuzione: le transazioni che interessano molte righe con posizioni condivise sono più veloci e economiche transazioni che interessano molte righe sparse nel database oppure in una tabella di grandi dimensioni.

Le transazioni più efficienti in Spanner includono solo le letture e scritture che devono essere applicate a livello atomico. Le transazioni sono più veloci legge e scrive i dati di accesso nella stessa parte dello spazio delle chiavi.

Transazioni di sola lettura

Oltre a bloccare le transazioni di lettura/scrittura, Spanner offre transazioni di sola lettura.

Utilizza una transazione di sola lettura quando devi eseguire più letture allo stesso timestamp. Se puoi esprimere la lettura utilizzando una delle metodi di lettura singola, è consigliabile utilizzare un solo metodo di lettura. Le prestazioni dell'uso di una singola chiamata di lettura dovrebbe essere paragonabile alle prestazioni di una singola lettura transazione.

Se stai leggendo una grande quantità di dati, valuta la possibilità di utilizzare le partizioni per leggere i dati in parallelo.

Poiché le transazioni di sola lettura non scrivono, non bloccare altre transazioni. Transazioni di sola lettura osserva un prefisso coerente della cronologia dei commit delle transazioni, l'applicazione riceve sempre dati coerenti.

Proprietà

Una transazione Spanner di sola lettura esegue un insieme di letture in un singolo punto logico, sia dal punto di vista della transazione di sola lettura stessa e dal punto di vista di altri lettori e scrittori il database Spanner. Ciò significa che le transazioni di sola lettura osservare sempre uno stato coerente del database in un punto selezionato della cronologia delle transazioni.

Interfaccia

Spanner fornisce un'interfaccia per l'esecuzione di un insieme di lavori contesto di una transazione di sola lettura, con nuovi tentativi in caso di interruzione della transazione.

Esempio

Di seguito viene mostrato come utilizzare una transazione di sola lettura per ottenere dati coerenti per due letture nello stesso timestamp:

C++

void ReadOnlyTransaction(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  auto read_only = spanner::MakeReadOnlyTransaction();

  spanner::SqlStatement select(
      "SELECT SingerId, AlbumId, AlbumTitle FROM Albums");
  using RowType = std::tuple<std::int64_t, std::int64_t, std::string>;

  // Read#1.
  auto rows1 = client.ExecuteQuery(read_only, select);
  std::cout << "Read 1 results\n";
  for (auto& row : spanner::StreamOf<RowType>(rows1)) {
    if (!row) throw std::move(row).status();
    std::cout << "SingerId: " << std::get<0>(*row)
              << " AlbumId: " << std::get<1>(*row)
              << " AlbumTitle: " << std::get<2>(*row) << "\n";
  }
  // Read#2. Even if changes occur in-between the reads the transaction ensures
  // that Read #1 and Read #2 return the same data.
  auto rows2 = client.ExecuteQuery(read_only, select);
  std::cout << "Read 2 results\n";
  for (auto& row : spanner::StreamOf<RowType>(rows2)) {
    if (!row) throw std::move(row).status();
    std::cout << "SingerId: " << std::get<0>(*row)
              << " AlbumId: " << std::get<1>(*row)
              << " AlbumTitle: " << std::get<2>(*row) << "\n";
  }
}

C#


using Google.Cloud.Spanner.Data;
using System;
using System.Collections.Generic;
using System.Threading.Tasks;
using System.Transactions;

public class QueryDataWithTransactionAsyncSample
{
    public class Album
    {
        public int SingerId { get; set; }
        public int AlbumId { get; set; }
        public string AlbumTitle { get; set; }
    }

    public async Task<List<Album>> QueryDataWithTransactionAsync(string projectId, string instanceId, string databaseId)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";

        var albums = new List<Album>();
        using TransactionScope scope = new TransactionScope(TransactionScopeAsyncFlowOption.Enabled);
        using var connection = new SpannerConnection(connectionString);

        // Opens the connection so that the Spanner transaction included in the TransactionScope
        // is read-only TimestampBound.Strong.
        await connection.OpenAsync(SpannerTransactionCreationOptions.ReadOnly, options: null, cancellationToken: default);
        using var cmd = connection.CreateSelectCommand("SELECT SingerId, AlbumId, AlbumTitle FROM Albums");

        // Read #1.
        using (var reader = await cmd.ExecuteReaderAsync())
        {
            while (await reader.ReadAsync())
            {
                Console.WriteLine("SingerId : " + reader.GetFieldValue<string>("SingerId")
                    + " AlbumId : " + reader.GetFieldValue<string>("AlbumId")
                    + " AlbumTitle : " + reader.GetFieldValue<string>("AlbumTitle"));
            }
        }

        // Read #2. Even if changes occur in-between the reads,
        // the transaction ensures that Read #1 and Read #2
        // return the same data.
        using (var reader = await cmd.ExecuteReaderAsync())
        {
            while (await reader.ReadAsync())
            {
                albums.Add(new Album
                {
                    AlbumId = reader.GetFieldValue<int>("AlbumId"),
                    SingerId = reader.GetFieldValue<int>("SingerId"),
                    AlbumTitle = reader.GetFieldValue<string>("AlbumTitle")
                });
            }
        }
        scope.Complete();
        Console.WriteLine("Transaction complete.");
        return albums;
    }
}

Vai


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"
)

func readOnlyTransaction(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	ro := client.ReadOnlyTransaction()
	defer ro.Close()
	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := ro.Query(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			break
		}
		if err != nil {
			return err
		}
		var singerID int64
		var albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}

	iter = ro.Read(ctx, "Albums", spanner.AllKeys(), []string{"SingerId", "AlbumId", "AlbumTitle"})
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID int64
		var albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

Java

static void readOnlyTransaction(DatabaseClient dbClient) {
  // ReadOnlyTransaction must be closed by calling close() on it to release resources held by it.
  // We use a try-with-resource block to automatically do so.
  try (ReadOnlyTransaction transaction = dbClient.readOnlyTransaction()) {
    ResultSet queryResultSet =
        transaction.executeQuery(
            Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"));
    while (queryResultSet.next()) {
      System.out.printf(
          "%d %d %s\n",
          queryResultSet.getLong(0), queryResultSet.getLong(1), queryResultSet.getString(2));
    }
    try (ResultSet readResultSet =
        transaction.read(
            "Albums", KeySet.all(), Arrays.asList("SingerId", "AlbumId", "AlbumTitle"))) {
      while (readResultSet.next()) {
        System.out.printf(
            "%d %d %s\n",
            readResultSet.getLong(0), readResultSet.getLong(1), readResultSet.getString(2));
      }
    }
  }
}

Node.js

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

// Gets a transaction object that captures the database state
// at a specific point in time
database.getSnapshot(async (err, transaction) => {
  if (err) {
    console.error(err);
    return;
  }
  const queryOne = 'SELECT SingerId, AlbumId, AlbumTitle FROM Albums';

  try {
    // Read #1, using SQL
    const [qOneRows] = await transaction.run(queryOne);

    qOneRows.forEach(row => {
      const json = row.toJSON();
      console.log(
        `SingerId: ${json.SingerId}, AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`
      );
    });

    const queryTwo = {
      columns: ['SingerId', 'AlbumId', 'AlbumTitle'],
    };

    // Read #2, using the `read` method. Even if changes occur
    // in-between the reads, the transaction ensures that both
    // return the same data.
    const [qTwoRows] = await transaction.read('Albums', queryTwo);

    qTwoRows.forEach(row => {
      const json = row.toJSON();
      console.log(
        `SingerId: ${json.SingerId}, AlbumId: ${json.AlbumId}, AlbumTitle: ${json.AlbumTitle}`
      );
    });

    console.log('Successfully executed read-only transaction.');
  } catch (err) {
    console.error('ERROR:', err);
  } finally {
    transaction.end();
    // Close the database when finished.
    await database.close();
  }
});

PHP

use Google\Cloud\Spanner\SpannerClient;

/**
 * Reads data inside of a read-only transaction.
 *
 * Within the read-only transaction, or "snapshot", the application sees
 * consistent view of the database at a particular timestamp.
 * Example:
 * ```
 * read_only_transaction($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function read_only_transaction(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $snapshot = $database->snapshot();
    $results = $snapshot->execute(
        'SELECT SingerId, AlbumId, AlbumTitle FROM Albums'
    );
    print('Results from the first read:' . PHP_EOL);
    foreach ($results as $row) {
        printf('SingerId: %s, AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['SingerId'], $row['AlbumId'], $row['AlbumTitle']);
    }

    // Perform another read using the `read` method. Even if the data
    // is updated in-between the reads, the snapshot ensures that both
    // return the same data.
    $keySet = $spanner->keySet(['all' => true]);
    $results = $database->read(
        'Albums',
        $keySet,
        ['SingerId', 'AlbumId', 'AlbumTitle']
    );

    print('Results from the second read:' . PHP_EOL);
    foreach ($results->rows() as $row) {
        printf('SingerId: %s, AlbumId: %s, AlbumTitle: %s' . PHP_EOL,
            $row['SingerId'], $row['AlbumId'], $row['AlbumTitle']);
    }
}

Python

def read_only_transaction(instance_id, database_id):
    """Reads data inside of a read-only transaction.

    Within the read-only transaction, or "snapshot", the application sees
    consistent view of the database at a particular timestamp.
    """
    spanner_client = spanner.Client()
    instance = spanner_client.instance(instance_id)
    database = instance.database(database_id)

    with database.snapshot(multi_use=True) as snapshot:
        # Read using SQL.
        results = snapshot.execute_sql(
            "SELECT SingerId, AlbumId, AlbumTitle FROM Albums"
        )

        print("Results from first read:")
        for row in results:
            print("SingerId: {}, AlbumId: {}, AlbumTitle: {}".format(*row))

        # Perform another read using the `read` method. Even if the data
        # is updated in-between the reads, the snapshot ensures that both
        # return the same data.
        keyset = spanner.KeySet(all_=True)
        results = snapshot.read(
            table="Albums", columns=("SingerId", "AlbumId", "AlbumTitle"), keyset=keyset
        )

        print("Results from second read:")
        for row in results:
            print("SingerId: {}, AlbumId: {}, AlbumTitle: {}".format(*row))

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

client.snapshot do |snapshot|
  snapshot.execute("SELECT SingerId, AlbumId, AlbumTitle FROM Albums").rows.each do |row|
    puts "#{row[:AlbumId]} #{row[:AlbumTitle]} #{row[:SingerId]}"
  end

  # Even if changes occur in-between the reads, the transaction ensures that
  # both return the same data.
  snapshot.read("Albums", [:AlbumId, :AlbumTitle, :SingerId]).rows.each do |row|
    puts "#{row[:AlbumId]} #{row[:AlbumTitle]} #{row[:SingerId]}"
  end
end

Transazioni DML partizionate

Utilizzando il linguaggio di manipolazione dei dati partizionato (DML partizionato), puoi eseguire istruzioni UPDATE e DELETE su larga scala senza incorrere in limiti di transazioni o bloccare un'intera tabella. Spanner partiziona lo spazio delle chiavi ed esegue gli enunciati DML su ogni partizione in una transazione di lettura-scrittura separata.

Esegui istruzioni DML in transazioni di lettura/scrittura che crei esplicitamente nel codice. Per ulteriori informazioni, vedi Utilizzo di DML.

Proprietà

Puoi eseguire una sola istruzione DML partizionata alla volta, indipendentemente dal fatto che utilizzando un metodo della libreria client o Google Cloud CLI.

Le transazioni partizionate non supportano il commit o il rollback. Chiave inglese esegue e applica immediatamente l'istruzione DML. Se annulli l'operazione, o l'operazione non va a buon fine, Spanner annulla tutte le esecuzioni e non avvia nessuna delle partizioni rimanenti. Chiave inglese non esegue il rollback di nessuna partizione già eseguita.

Interfaccia

Spanner fornisce un'interfaccia per l'esecuzione di un singolo DML partizionato l'Informativa.

Esempi

Il seguente esempio di codice aggiorna la colonna MarketingBudget della tabella Albums.

C++

Puoi usare la funzione ExecutePartitionedDml() per eseguire un'istruzione DML partizionata.

void DmlPartitionedUpdate(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  auto result = client.ExecutePartitionedDml(
      spanner::SqlStatement("UPDATE Albums SET MarketingBudget = 100000"
                            "  WHERE SingerId > 1"));
  if (!result) throw std::move(result).status();
  std::cout << "Updated at least " << result->row_count_lower_bound
            << " row(s) [spanner_dml_partitioned_update]\n";
}

C#

Utilizzerai il metodo ExecutePartitionedUpdateAsync() per eseguire un'istruzione DML partizionata.


using Google.Cloud.Spanner.Data;
using System;
using System.Threading.Tasks;

public class UpdateUsingPartitionedDmlCoreAsyncSample
{
    public async Task<long> UpdateUsingPartitionedDmlCoreAsync(string projectId, string instanceId, string databaseId)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";

        using var connection = new SpannerConnection(connectionString);
        await connection.OpenAsync();

        using var cmd = connection.CreateDmlCommand("UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1");
        long rowCount = await cmd.ExecutePartitionedUpdateAsync();

        Console.WriteLine($"{rowCount} row(s) updated...");
        return rowCount;
    }
}

Vai

Utilizza il metodo PartitionedUpdate() per eseguire un'istruzione DML partizionata.


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
)

func updateUsingPartitionedDML(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	stmt := spanner.Statement{SQL: "UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1"}
	rowCount, err := client.PartitionedUpdate(ctx, stmt)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "%d record(s) updated.\n", rowCount)
	return nil
}

Java

Utilizzerai il metodo executePartitionedUpdate() per eseguire un'istruzione DML partizionata.

static void updateUsingPartitionedDml(DatabaseClient dbClient) {
  String sql = "UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1";
  long rowCount = dbClient.executePartitionedUpdate(Statement.of(sql));
  System.out.printf("%d records updated.\n", rowCount);
}

Node.js

Utilizza il metodo runPartitionedUpdate() per eseguire un'istruzione DML partizionata.

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

try {
  const [rowCount] = await database.runPartitionedUpdate({
    sql: 'UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1',
  });
  console.log(`Successfully updated ${rowCount} records.`);
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  database.close();
}

PHP

Utilizza il metodo executePartitionedUpdate() per eseguire un'istruzione DML partizionata.

use Google\Cloud\Spanner\SpannerClient;

/**
 * Updates sample data in the database by partition with a DML statement.
 *
 * This updates the `MarketingBudget` column which must be created before
 * running this sample. You can add the column by running the `add_column`
 * sample or by running this DDL statement against your database:
 *
 *     ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
 *
 * Example:
 * ```
 * update_data($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function update_data_with_partitioned_dml(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $rowCount = $database->executePartitionedUpdate(
        'UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1'
    );

    printf('Updated %d row(s).' . PHP_EOL, $rowCount);
}

Python

Utilizza il metodo execute_partitioned_dml() per eseguire un'istruzione DML partizionata.

# instance_id = "your-spanner-instance"
# database_id = "your-spanner-db-id"

spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)

row_ct = database.execute_partitioned_dml(
    "UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1"
)

print("{} records updated.".format(row_ct))

Ruby

Utilizzerai il metodo execute_partitioned_update() per eseguire un'istruzione DML partizionata.

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

row_count = client.execute_partition_update(
  "UPDATE Albums SET MarketingBudget = 100000 WHERE SingerId > 1"
)

puts "#{row_count} records updated."

L'esempio di codice seguente elimina le righe dalla tabella Singers in base alla colonna SingerId.

C++

void DmlPartitionedDelete(google::cloud::spanner::Client client) {
  namespace spanner = ::google::cloud::spanner;
  auto result = client.ExecutePartitionedDml(
      spanner::SqlStatement("DELETE FROM Singers WHERE SingerId > 10"));
  if (!result) throw std::move(result).status();
  std::cout << "Deleted at least " << result->row_count_lower_bound
            << " row(s) [spanner_dml_partitioned_delete]\n";
}

C#


using Google.Cloud.Spanner.Data;
using System;
using System.Threading.Tasks;

public class DeleteUsingPartitionedDmlCoreAsyncSample
{
    public async Task<long> DeleteUsingPartitionedDmlCoreAsync(string projectId, string instanceId, string databaseId)
    {
        string connectionString = $"Data Source=projects/{projectId}/instances/{instanceId}/databases/{databaseId}";

        using var connection = new SpannerConnection(connectionString);
        await connection.OpenAsync();

        using var cmd = connection.CreateDmlCommand("DELETE FROM Singers WHERE SingerId > 10");
        long rowCount = await cmd.ExecutePartitionedUpdateAsync();

        Console.WriteLine($"{rowCount} row(s) deleted...");
        return rowCount;
    }
}

Vai


import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/spanner"
)

func deleteUsingPartitionedDML(w io.Writer, db string) error {
	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	stmt := spanner.Statement{SQL: "DELETE FROM Singers WHERE SingerId > 10"}
	rowCount, err := client.PartitionedUpdate(ctx, stmt)
	if err != nil {
		return err

	}
	fmt.Fprintf(w, "%d record(s) deleted.", rowCount)
	return nil
}

Java

static void deleteUsingPartitionedDml(DatabaseClient dbClient) {
  String sql = "DELETE FROM Singers WHERE SingerId > 10";
  long rowCount = dbClient.executePartitionedUpdate(Statement.of(sql));
  System.out.printf("%d records deleted.\n", rowCount);
}

Node.js

// Imports the Google Cloud client library
const {Spanner} = require('@google-cloud/spanner');

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const projectId = 'my-project-id';
// const instanceId = 'my-instance';
// const databaseId = 'my-database';

// Creates a client
const spanner = new Spanner({
  projectId: projectId,
});

// Gets a reference to a Cloud Spanner instance and database
const instance = spanner.instance(instanceId);
const database = instance.database(databaseId);

try {
  const [rowCount] = await database.runPartitionedUpdate({
    sql: 'DELETE FROM Singers WHERE SingerId > 10',
  });
  console.log(`Successfully deleted ${rowCount} records.`);
} catch (err) {
  console.error('ERROR:', err);
} finally {
  // Close the database when finished.
  database.close();
}

PHP

use Google\Cloud\Spanner\SpannerClient;

/**
 * Delete sample data in the database by partition with a DML statement.
 *
 * This updates the `MarketingBudget` column which must be created before
 * running this sample. You can add the column by running the `add_column`
 * sample or by running this DDL statement against your database:
 *
 *     ALTER TABLE Albums ADD COLUMN MarketingBudget INT64
 *
 * Example:
 * ```
 * update_data($instanceId, $databaseId);
 * ```
 *
 * @param string $instanceId The Spanner instance ID.
 * @param string $databaseId The Spanner database ID.
 */
function delete_data_with_partitioned_dml(string $instanceId, string $databaseId): void
{
    $spanner = new SpannerClient();
    $instance = $spanner->instance($instanceId);
    $database = $instance->database($databaseId);

    $rowCount = $database->executePartitionedUpdate(
        'DELETE FROM Singers WHERE SingerId > 10'
    );

    printf('Deleted %d row(s).' . PHP_EOL, $rowCount);
}

Python

# instance_id = "your-spanner-instance"
# database_id = "your-spanner-db-id"
spanner_client = spanner.Client()
instance = spanner_client.instance(instance_id)
database = instance.database(database_id)

row_ct = database.execute_partitioned_dml("DELETE FROM Singers WHERE SingerId > 10")

print("{} record(s) deleted.".format(row_ct))

Ruby

# project_id  = "Your Google Cloud project ID"
# instance_id = "Your Spanner instance ID"
# database_id = "Your Spanner database ID"

require "google/cloud/spanner"

spanner = Google::Cloud::Spanner.new project: project_id
client  = spanner.client instance_id, database_id

row_count = client.execute_partition_update(
  "DELETE FROM Singers WHERE SingerId > 10"
)

puts "#{row_count} records deleted."