Capturar métricas personalizadas do lado do cliente usando o OpenCensus

Este documento descreve como capturar métricas personalizadas do lado do cliente usando o OpenCensus. Métricas personalizadas do lado do cliente podem ajudar a encontrar a origem da latência no seu sistema. Para mais informações, consulte Identificar o ponto de latência.

As bibliotecas de cliente do Spanner também fornecem estatísticas e rastros usando o framework de observabilidade do OpenCensus. Por padrão, o framework está desativado.

Você precisa conhecer as métricas personalizadas associadas ao OpenCensus e ter as bibliotecas de métricas do OpenCensus e o exportador de observabilidade do Google Cloud disponíveis para o aplicativo antes de capturar métricas personalizadas.

Capturar a latência de ida e volta do cliente

A latência de ida e volta do cliente é a duração em milissegundos entre o primeiro byte da solicitação da API Spanner que o cliente envia ao banco de dados e o último byte da resposta que o cliente recebe do banco de dados. A solicitação da API pode ser enviada pelo Google Front End (GFE) ou pelo front-end da API Cloud Spanner.

É possível capturar a latência de ida e volta do cliente usando o seguinte código:

Java

static void captureGrpcMetric(DatabaseClient dbClient) {
  // Add io.grpc:grpc-census and io.opencensus:opencensus-exporter-stats-stackdriver
  //  dependencies to enable gRPC metrics.

  // Register basic gRPC views.
  RpcViews.registerClientGrpcBasicViews();

  // Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet =
      dbClient
          .singleUse() // Execute a single read or query against Cloud Spanner.
          .executeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

Go


import (
	"context"
	"fmt"
	"io"
	"regexp"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/plugin/ocgrpc"
	"go.opencensus.io/stats/view"
)

var validDatabasePattern = regexp.MustCompile("^projects/(?P<project>[^/]+)/instances/(?P<instance>[^/]+)/databases/(?P<database>[^/]+)$")

func queryWithGRPCMetric(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	if err := view.Register(ocgrpc.DefaultClientViews...); err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := client.Single().Query(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

func parseDatabaseName(databaseUri string) (project, instance, database string, err error) {
	matches := validDatabasePattern.FindStringSubmatch(databaseUri)
	if len(matches) == 0 {
		return "", "", "", fmt.Errorf("failed to parse database name from %q according to pattern %q",
			databaseUri, validDatabasePattern.String())
	}
	return matches[1], matches[2], matches[3], nil
}

O exemplo de código anexa a string roundtrip_latency ao nome da métrica quando ela é exportada para o Cloud Monitoring. É possível pesquisar essa métrica no Cloud Monitoring usando a string anexada.

Capturar a latência do GFE

A latência do GFE é a duração em milissegundos entre o momento em que a rede do Google recebe uma chamada de procedimento remoto do cliente e quando o GFE recebe o primeiro byte da resposta.

É possível capturar a latência da GFE usando o seguinte código:

Java

static void captureGfeMetric(DatabaseClient dbClient) {
  // Capture GFE Latency.
  SpannerRpcViews.registerGfeLatencyView();

  // Capture GFE Latency and GFE Header missing count.
  // SpannerRpcViews.registerGfeLatencyAndHeaderMissingCountViews();

  // Capture only GFE Header missing count.
  // SpannerRpcViews.registerGfeHeaderMissingCountView();

  // Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet =
      dbClient
          .singleUse() // Execute a single read or query against Cloud Spanner.
          .executeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"))) {
    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
  }
}

Go


// We are in the process of adding support in the Cloud Spanner Go Client Library
// to capture the gfe_latency metric.

import (
	"context"
	"fmt"
	"io"
	"strconv"
	"strings"

	spanner "cloud.google.com/go/spanner/apiv1"
	sppb "cloud.google.com/go/spanner/apiv1/spannerpb"
	gax "github.com/googleapis/gax-go/v2"
	"google.golang.org/grpc"
	"google.golang.org/grpc/metadata"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/stats"
	"go.opencensus.io/stats/view"
	"go.opencensus.io/tag"
)

// OpenCensus Tag, Measure and View.
var (
	KeyMethod    = tag.MustNewKey("grpc_client_method")
	GFELatencyMs = stats.Int64("cloud.google.com/go/spanner/gfe_latency",
		"Latency between Google's network receives an RPC and reads back the first byte of the response", "ms")
	GFELatencyView = view.View{
		Name:        "cloud.google.com/go/spanner/gfe_latency",
		Measure:     GFELatencyMs,
		Description: "Latency between Google's network receives an RPC and reads back the first byte of the response",
		Aggregation: view.Distribution(0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
			16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
			300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
			100000.0),
		TagKeys: []tag.Key{KeyMethod}}
)

func queryWithGFELatency(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	err = view.Register(&GFELatencyView)
	if err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	// Create a session.
	req := &sppb.CreateSessionRequest{Database: db}
	session, err := client.CreateSession(ctx, req)
	if err != nil {
		return err
	}

	// Execute a SQL query and retrieve the GFE server-timing header in gRPC metadata.
	req2 := &sppb.ExecuteSqlRequest{
		Session: session.Name,
		Sql:     `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`,
	}
	var md metadata.MD
	resultSet, err := client.ExecuteSql(ctx, req2, gax.WithGRPCOptions(grpc.Header(&md)))
	if err != nil {
		return err
	}
	for _, row := range resultSet.GetRows() {
		for _, value := range row.GetValues() {
			fmt.Fprintf(w, "%s ", value.GetStringValue())
		}
		fmt.Fprintf(w, "\n")
	}

	// The format is: "server-timing: gfet4t7; dur=[GFE latency in ms]"
	srvTiming := md.Get("server-timing")[0]
	gfeLtcy, err := strconv.Atoi(strings.TrimPrefix(srvTiming, "gfet4t7; dur="))
	if err != nil {
		return err
	}
	// Record GFE t4t7 latency with OpenCensus.
	ctx, err = tag.New(ctx, tag.Insert(KeyMethod, "ExecuteSql"))
	if err != nil {
		return err
	}
	stats.Record(ctx, GFELatencyMs.M(int64(gfeLtcy)))

	return nil
}

O exemplo de código anexa a string spanner/gfe_latency ao nome da métrica quando ela é exportada para o Cloud Monitoring. É possível pesquisar essa métrica no Cloud Monitoring usando a string anexada.

Capturar a latência da solicitação da API Cloud Spanner

A latência de solicitação da API Cloud Spanner é o tempo em segundos entre o primeiro byte da solicitação do cliente que o front-end da API Cloud Spanner recebe e o último byte da resposta que o front-end da API Cloud Spanner envia.

Essa métrica de latência está disponível como parte das métricas do Spanner no Cloud Monitoring.

Capturar latência da consulta

A latência da consulta é a duração em milissegundos para executar consultas SQL no banco de dados do Spanner.

É possível capturar a latência da consulta usando o seguinte código:

Java

private static final String MILLISECOND = "ms";
static final List<Double> RPC_MILLIS_BUCKET_BOUNDARIES =
    Collections.unmodifiableList(
        Arrays.asList(
            0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
            16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
            300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
            100000.0));
static final Aggregation AGGREGATION_WITH_MILLIS_HISTOGRAM =
    Distribution.create(BucketBoundaries.create(RPC_MILLIS_BUCKET_BOUNDARIES));

static MeasureDouble QUERY_STATS_ELAPSED =
    MeasureDouble.create(
        "cloud.google.com/java/spanner/query_stats_elapsed",
        "The execution of the query",
        MILLISECOND);

// Register the view. It is imperative that this step exists,
// otherwise recorded metrics will be dropped and never exported.
static View QUERY_STATS_LATENCY_VIEW = View
    .create(Name.create("cloud.google.com/java/spanner/query_stats_elapsed"),
        "The execution of the query",
        QUERY_STATS_ELAPSED,
        AGGREGATION_WITH_MILLIS_HISTOGRAM,
        Collections.emptyList());

static ViewManager manager = Stats.getViewManager();
private static final StatsRecorder STATS_RECORDER = Stats.getStatsRecorder();

static void captureQueryStatsMetric(DatabaseClient dbClient) {
  manager.registerView(QUERY_STATS_LATENCY_VIEW);

  // Enable OpenCensus exporters to export metrics to Cloud Monitoring.
  // Exporters use Application Default Credentials to authenticate.
  // See https://developers.google.com/identity/protocols/application-default-credentials
  // for more details.
  try {
    StackdriverStatsExporter.createAndRegister();
  } catch (IOException | IllegalStateException e) {
    System.out.println("Error during StackdriverStatsExporter");
  }

  try (ResultSet resultSet = dbClient.singleUse()
      .analyzeQuery(Statement.of("SELECT SingerId, AlbumId, AlbumTitle FROM Albums"),
          QueryAnalyzeMode.PROFILE)) {

    while (resultSet.next()) {
      System.out.printf(
          "%d %d %s", resultSet.getLong(0), resultSet.getLong(1), resultSet.getString(2));
    }
    Value value = resultSet.getStats().getQueryStats()
        .getFieldsOrDefault("elapsed_time", Value.newBuilder().setStringValue("0 msecs").build());
    double elapasedTime = Double.parseDouble(value.getStringValue().replaceAll(" msecs", ""));
    STATS_RECORDER.newMeasureMap()
        .put(QUERY_STATS_ELAPSED, elapasedTime)
        .record();
  }
}

Go


import (
	"context"
	"fmt"
	"io"
	"strconv"
	"strings"

	"cloud.google.com/go/spanner"
	"google.golang.org/api/iterator"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/stats"
	"go.opencensus.io/stats/view"
	"go.opencensus.io/tag"
)

// OpenCensus Tag, Measure and View.
var (
	QueryStatsElapsed = stats.Float64("cloud.google.com/go/spanner/query_stats_elapsed",
		"The execution of the query", "ms")
	QueryStatsLatencyView = view.View{
		Name:        "cloud.google.com/go/spanner/query_stats_elapsed",
		Measure:     QueryStatsElapsed,
		Description: "The execution of the query",
		Aggregation: view.Distribution(0.0, 0.01, 0.05, 0.1, 0.3, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0, 13.0,
			16.0, 20.0, 25.0, 30.0, 40.0, 50.0, 65.0, 80.0, 100.0, 130.0, 160.0, 200.0, 250.0,
			300.0, 400.0, 500.0, 650.0, 800.0, 1000.0, 2000.0, 5000.0, 10000.0, 20000.0, 50000.0,
			100000.0),
		TagKeys: []tag.Key{}}
)

func queryWithQueryStats(w io.Writer, db string) error {
	projectID, _, _, err := parseDatabaseName(db)
	if err != nil {
		return err
	}

	ctx := context.Background()
	client, err := spanner.NewClient(ctx, db)
	if err != nil {
		return err
	}
	defer client.Close()

	// Register OpenCensus views.
	err = view.Register(&QueryStatsLatencyView)
	if err != nil {
		return err
	}

	// Create OpenCensus Stackdriver exporter.
	sd, err := stackdriver.NewExporter(stackdriver.Options{
		ProjectID: projectID,
	})
	if err != nil {
		return err
	}
	// It is imperative to invoke flush before your main function exits
	defer sd.Flush()

	// Start the metrics exporter
	sd.StartMetricsExporter()
	defer sd.StopMetricsExporter()

	// Execute a SQL query and get the query stats.
	stmt := spanner.Statement{SQL: `SELECT SingerId, AlbumId, AlbumTitle FROM Albums`}
	iter := client.Single().QueryWithStats(ctx, stmt)
	defer iter.Stop()
	for {
		row, err := iter.Next()
		if err == iterator.Done {
			// Record query execution time with OpenCensus.
			elapasedTime := iter.QueryStats["elapsed_time"].(string)
			elapasedTimeMs, err := strconv.ParseFloat(strings.TrimSuffix(elapasedTime, " msecs"), 64)
			if err != nil {
				return err
			}
			stats.Record(ctx, QueryStatsElapsed.M(elapasedTimeMs))
			return nil
		}
		if err != nil {
			return err
		}
		var singerID, albumID int64
		var albumTitle string
		if err := row.Columns(&singerID, &albumID, &albumTitle); err != nil {
			return err
		}
		fmt.Fprintf(w, "%d %d %s\n", singerID, albumID, albumTitle)
	}
}

O exemplo de código anexa a string spanner/query_stats_elapsed ao nome da métrica quando ela é exportada para o Cloud Monitoring. É possível pesquisar essa métrica no Cloud Monitoring usando a string anexada.

Conferir métricas no Metrics Explorer

  1. No console Google Cloud , acesse a página Metrics Explorer.

    Acessar o Metrics Explorer

  2. Selecione o projeto.

  3. Clique em Selecionar uma métrica.

  4. Pesquise métricas de latência usando as seguintes strings:

    • roundtrip_latency: para a métrica de latência de ida e volta do cliente.
    • spanner/gfe_latency: para a métrica de latência do GFE.
    • spanner/query_stats_elapsed: para a métrica de latência da consulta.
  5. Selecione a métrica e clique em Aplicar.

Para mais informações sobre como agrupar ou agregar sua métrica, consulte Criar consultas usando menus.

A seguir