从 DynamoDB 迁移到 Spanner

本教程介绍如何从 Amazon DynamoDB 迁移到 Spanner。主要受众是想要从 NoSQL 系统迁移到 Spanner 的应用所有者。Spanner 是一个支持事务的完全关系型 SQL 数据库系统,能够容错且具备很高的扩缩能力。如果您对 Amazon DynamoDB 表的用法统一(就类型和布局而言),则映射到 Spanner 非常简单。如果 Amazon DynamoDB 表包含任意数据类型和值,则转移到其他 NoSQL 服务(例如 DatastoreFirestore)可能会更容易些。

本教程假定您熟悉数据库架构、数据类型、NoSQL 的基础知识以及关系型数据库系统。本教程依赖于运行预定义任务来执行示例迁移。完成本教程之后,您可以修改提供的代码和步骤以便匹配您的环境

以下架构图概括了本教程中用于迁移数据的组件:

迁移作业组成部分的架构图

目标

  • 将数据从 Amazon DynamoDB 迁移到 Spanner。
  • 创建 Spanner 数据库和迁移表。
  • 将 NoSQL 架构映射到关系型架构。
  • 创建和导出使用 Amazon DynamoDB 的数据集示例。
  • 在 Amazon S3 和 Cloud Storage 之间转移数据。
  • 使用 Dataflow 将数据加载到 Spanner 中。

费用

本教程使用 Google Cloud的以下付费组件:

Spanner 费用基于实例中的计算容量以及每月结算周期内存储的数据量。在本教程中,您将使用这些资源的最低配置,并在结束时清理。对于实际场景,请估计吞吐量和存储空间需求,然后使用 Spanner 实例文档确定所需的计算容量。

除了 Google Cloud 资源之外,本教程还使用以下 Amazon Web Services (AWS) 资源:

  • AWS Lambda
  • Amazon S3
  • Amazon DynamoDB

只有在迁移过程中才需要这些服务。在本教程结束时,请按照说明清理所有资源以防止产生不必要的费用。使用 AWS 价格计算器可估算这些成本。

如需根据您的预计使用量来估算费用,请使用价格计算器

准备工作

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Spanner, Pub/Sub, Compute Engine, and Dataflow APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the Spanner, Pub/Sub, Compute Engine, and Dataflow APIs.

    Enable the APIs

完成本文档中描述的任务后,您可以通过删除所创建的资源来避免继续计费。如需了解详情,请参阅清理

准备环境

在本教程中,您将在 Cloud Shell 中运行命令。Cloud Shell 让您能够访问 Google Cloud中的命令行,并且包含进行 Google Cloud 开发所需的 Google Cloud CLI 及其他工具。初始化 Cloud Shell 可能需要几分钟。

  1. In the Google Cloud console, activate Cloud Shell.

    Activate Cloud Shell

    At the bottom of the Google Cloud console, a Cloud Shell session starts and displays a command-line prompt. Cloud Shell is a shell environment with the Google Cloud CLI already installed and with values already set for your current project. It can take a few seconds for the session to initialize.

  2. 设置默认的 Compute Engine 地区,例如 us-central1-b。 gcloud config set compute/zone us-central1-b
  3. 克隆包含示例代码的 GitHub 代码库。 git clone https://github.com/GoogleCloudPlatform/dynamodb-spanner-migration.git
  4. 前往克隆的目录。 cd dynamodb-spanner-migration
  5. 创建 Python 虚拟环境。 pip3 install virtualenv virtualenv env
  6. 激活虚拟环境。 source env/bin/activate
  7. 安装所需的 Python 模块。 pip3 install -r requirements.txt

配置 AWS 访问权限

在本教程中,您将创建和删除 Amazon DynamoDB 表、Amazon S3 存储桶和其他资源。要访问这些资源,首先需要创建所需的 AWS Identity and Access Management (IAM) 权限。您可以使用测试或沙箱 AWS 账号来避免影响同一账号中的生产资源。

为 AWS Lambda 创建 AWS IAM 角色

在本部分中,您将创建 AWS IAM 角色,AWS Lambda 将在本教程的后续步骤中使用该角色。

  1. 在 AWS 控制台中,转到 IAM 部分,点击 Roles,然后选择 Create role
  2. Trusted entity type 下,确保已选择 AWS service
  3. Use case 下,选择 Lambda,然后点击 Next
  4. Permission policies 过滤条件框中,输入 AWSLambdaDynamoDBExecutionRole,然后按 Return 进行搜索。
  5. 选中 AWSLambdaDynamoDBExecutionRole 复选框,然后点击 Next
  6. Role name 框中,输入 dynamodb-spanner-lambda-role,然后点击 Create role

创建 AWS IAM 用户

按照以下步骤创建 AWS IAM 用户,该用户能够以编程方式访问在整个教程中所使用的 AWS 资源。

  1. 如果您仍在 AWS 控制台的 IAM 部分,请点击 Users,然后选择 Add User
  2. User name 框中,输入 dynamodb-spanner-migration
  3. Access type 下,选中 Access key - Programmatic access 左侧的复选框。

  4. 点击 Next: Permissions

  5. 点击 Attach existing policies directly,然后使用 Search 框进行过滤,选中以下三个政策旁边的复选框:

    • AmazonDynamoDBFullAccess
    • AmazonS3FullAccess
    • AWSLambda_FullAccess
  6. 点击 Next: TagsNext: Review,然后点击 Create user

  7. 点击 Show 以查看凭据。屏幕上将显示新创建的用户的访问密钥 ID 和秘密访问密钥。请先不要关闭此窗口,下一部分中会用到这些凭据。请妥善地保存这些凭据,因为可以使用这些凭据来更改您的账号并影响您的环境。在本教程结束时,您可以删除 IAM 用户

配置 AWS 命令行界面

  1. 在 Cloud Shell 中,配置 AWS 命令行界面 (CLI)。

    aws configure
    

    此时会显示以下输出:

    AWS Access Key ID [None]: PASTE_YOUR_ACCESS_KEY_ID
    AWS Secret Access Key [None]: PASTE_YOUR_SECRET_ACCESS_KEY
    Default region name [None]: us-west-2
    Default output format [None]:
    
    • 输入您创建的 AWS IAM 账号的 ACCESS KEY IDSECRET ACCESS KEY
    • Default region name 字段中,输入 us-west-2。将其他字段保留为默认值。
  2. 关闭 AWS IAM 控制台窗口。

了解数据模型

下一部分概述了 Amazon DynamoDB 和 Spanner 的数据类型、键和索引之间的异同。

数据类型

Spanner 使用 GoogleSQL 数据类型。下表描述了 Amazon DynamoDB 数据类型与 Spanner 数据类型之间的对应关系。

Amazon DynamoDB Spanner
数字 根据精度或预期用途,可能会映射为 INT64、FLOAT64、TIMESTAMP 或 DATE。
字符串 字符串
布尔值 BOOL
空值 没有明确的类型。列可以包含空值。
二进制 字节
集合 数组
映射和清单 如果结构一致并且可以使用表 DDL 语法来描述,则为结构体类型。

主键

Amazon DynamoDB 主键可实现唯一性,它可以是哈希键,也可以组合使用哈希键加范围键。本教程首先展示主键为哈希键的 Amazon DynamoDB 表的迁移。此哈希键会成为 Spanner 表的主键。然后,关于交错表的部分中对 Amazon DynamoDB 表组合使用哈希键和范围键作为主键的这种情况进行了建模。

二级索引

Amazon DynamoDB 和 Spanner 都支持在非主键特性上创建索引。请记下 Amazon DynamoDB 表中的任何二级索引,以便在 Spanner 表上创建它们,本教程的后续部分介绍了这部分内容。

示例表

为了便于学习本教程,您将以下示例表从 Amazon DynamoDB 迁移到 Spanner:

Amazon DynamoDB Spanner
表名称 Migration Migration
主键 "Username" : String "Username" : STRING(1024)
键类型 哈希 不适用
其他字段 Zipcode: Number Subscribed: Boolean ReminderDate: String PointsEarned: Number Zipcode: INT64 Subscribed: BOOL ReminderDate: DATE PointsEarned: INT64

准备 Amazon DynamoDB 表

在下面的部分中,您将创建 Amazon DynamoDB 源表并为其填充数据。

  1. 在 Cloud Shell 中,创建一个使用示例表属性的 Amazon DynamoDB 表。

    aws dynamodb create-table --table-name Migration \
        --attribute-definitions AttributeName=Username,AttributeType=S \
        --key-schema AttributeName=Username,KeyType=HASH \
        --provisioned-throughput ReadCapacityUnits=75,WriteCapacityUnits=75
    
  2. 验证该表的状态是否为 ACTIVE

    aws dynamodb describe-table --table-name Migration \
        --query 'Table.TableStatus'
    
  3. 使用示例数据填充该表。

    python3 make-fake-data.py --table Migration --items 25000
    

创建 Spanner 数据库

创建一个具有最小计算容量的 Spanner 实例:100 个处理单元。此计算容量足以满足本教程的范围。对于生产部署,请参阅 Spanner 实例的文档以确定适当的计算容量来满足数据库性能要求。

在此示例中,您将在创建数据库的同时创建表架构。您也可以在创建数据库之后执行架构更新,这也很常见。

  1. 在设置默认 Compute Engine 地区的区域中创建一个 Spanner 实例,例如 us-central1

    gcloud beta spanner instances create spanner-migration \
        --config=regional-us-central1 --processing-units=100 \
        --description="Migration Demo"
    
  2. 在 Spanner 实例中创建数据库以及示例表。

    gcloud spanner databases create migrationdb \
        --instance=spanner-migration \
        --ddl "CREATE TABLE Migration ( \
                Username STRING(1024) NOT NULL, \
                PointsEarned INT64, \
                ReminderDate DATE, \
                Subscribed BOOL, \
                Zipcode INT64, \
             ) PRIMARY KEY (Username)"
    

准备迁移

后续部分将向您介绍如何导出 Amazon DynamoDB 源表以及设置 Pub/Sub 复制功能来捕获导出时对数据库所做的任何更改。

将更改流式传输到 Pub/Sub

请使用 AWS Lambda 函数将数据库更改流式传输到 Pub/Sub。

  1. 在 Cloud Shell 中,在源表上启用 Amazon DynamoDB 流。

    aws dynamodb update-table --table-name Migration \
        --stream-specification StreamEnabled=true,StreamViewType=NEW_AND_OLD_IMAGES
    
  2. 设置一个 Pub/Sub 主题以接收更改。

    gcloud pubsub topics create spanner-migration
    

    将出现以下输出:

    Created topic [projects/your-project/topics/spanner-migration].
    
  3. 创建 IAM 服务账号以将表更新推送到 Pub/Sub 主题。

    gcloud iam service-accounts create spanner-migration \
        --display-name="Spanner Migration"
    

    将出现以下输出:

    Created service account [spanner-migration].
    
  4. 创建 IAM 政策绑定,以便服务账号有权发布到 Pub/Sub。将 GOOGLE_CLOUD_PROJECT 替换为您的 Google Cloud 项目的名称。

    gcloud projects add-iam-policy-binding GOOGLE_CLOUD_PROJECT \
        --role roles/pubsub.publisher \
        --member serviceAccount:spanner-migration@GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com
    

    此时会显示以下输出:

    bindings:
    (...truncated...)
    - members:
      - serviceAccount:spanner-migration@solution-z.iam.gserviceaccount.com
      role: roles/pubsub.publisher
    
  5. 为服务账号创建凭据。

    gcloud iam service-accounts keys create credentials.json \
        --iam-account spanner-migration@GOOGLE_CLOUD_PROJECT.iam.gserviceaccount.com
    

    此时会显示以下输出:

    created key [5e559d9f6bd8293da31b472d85a233a3fd9b381c] of type [json] as [credentials.json] for [spanner-migration@your-project.iam.gserviceaccount.com]
    
  6. 准备并打包 AWS Lambda 函数以将 Amazon DynamoDB 表的更改推送到 Pub/Sub 主题。

    pip3 install --ignore-installed --target=lambda-deps google-cloud-pubsub
    cd lambda-deps; zip -r9 ../pubsub-lambda.zip *; cd -
    zip -g pubsub-lambda.zip ddbpubsub.py
  7. 创建一个变量以捕获您之前创建的 Lambda 执行角色的 Amazon 资源名称 (ARN)。

    LAMBDA_ROLE=$(aws iam list-roles \
        --query 'Roles[?RoleName==`dynamodb-spanner-lambda-role`].[Arn]' \
        --output text)
    
  8. 使用 pubsub-lambda.zip 包创建 AWS Lambda 函数。

    aws lambda create-function --function-name dynamodb-spanner-lambda \
        --runtime python3.9 --role ${LAMBDA_ROLE} \
        --handler ddbpubsub.lambda_handler --zip fileb://pubsub-lambda.zip \
        --environment Variables="{SVCACCT=$(base64 -w 0 credentials.json),PROJECT=GOOGLE_CLOUD_PROJECT,TOPIC=spanner-migration}"
    

    此时会显示以下输出:

    {
        "FunctionName": "dynamodb-spanner-lambda",
        "LastModified": "2022-03-17T23:45:26.445+0000",
        "RevisionId": "e58e8408-cd3a-4155-a184-4efc0da80bfb",
        "MemorySize": 128,
    ... truncated output... "PackageType": "Zip", "Architectures": [ "x86_64" ] }

  9. Create a variable to capture the ARN of the Amazon DynamoDB stream for your table.

    STREAMARN=$(aws dynamodb describe-table \
        --table-name Migration \
        --query "Table.LatestStreamArn" \
        --output text)
    
  10. 将 Lambda 函数附加到 Amazon DynamoDB 表。

    aws lambda create-event-source-mapping --event-source ${STREAMARN} \
        --function-name dynamodb-spanner-lambda --enabled \
        --starting-position TRIM_HORIZON
    
  11. 如需在测试期间优化响应性能,请将 --batch-size 1 添加到上一个命令的最后,这样,每当创建、更新或删除条目时,都会触发该函数。

    您将会看到类似于以下内容的输出:

    {
        "UUID": "44e4c2bf-493a-4ba2-9859-cde0ae5c5e92",
        "StateTransitionReason": "User action",
        "LastModified": 1530662205.549,
        "BatchSize": 100,
        "EventSourceArn": "arn:aws:dynamodb:us-west-2:accountid:table/Migration/stream/2018-07-03T15:09:57.725",
        "FunctionArn": "arn:aws:lambda:us-west-2:accountid:function:dynamodb-spanner-lambda",
        "State": "Creating",
        "LastProcessingResult": "No records processed"
    ... truncated output...
    

将 Amazon DynamoDB 表导出到 Amazon S3

  1. 在 Cloud Shell 中,为您在后续部分中使用的存储桶名称创建变量。

    BUCKET=${DEVSHELL_PROJECT_ID}-dynamodb-spanner-export
    
  2. 创建 Amazon S3 存储桶以接收 DynamoDB 导出。

    aws s3 mb s3://${BUCKET}
    
  3. 在 AWS Management Console 中,前往 DynamoDB,然后点击 Tables

  4. 点击 Migration 表。

  5. Exports and stream 标签页下,点击 Export to S3

  6. 如果出现提示,请启用 point-in-time-recovery (PITR)。

  7. 点击 Browse S3,选择您之前创建的 S3 存储桶。

  8. 点击导出

  9. 点击刷新图标以更新导出作业的状态。作业需要几分钟才能完成导出。

    该过程完成后,请查看输出存储桶。

    aws s3 ls --recursive s3://${BUCKET}
    

    此步骤大约需要 5 分钟。完成后,您将看到如下所示的输出:

    2022-02-17 04:41:46          0 AWSDynamoDB/01645072900758-ee1232a3/_started
    2022-02-17 04:46:04     500441 AWSDynamoDB/01645072900758-ee1232a3/data/xygt7i2gje4w7jtdw5652s43pa.json.gz
    2022-02-17 04:46:17        199 AWSDynamoDB/01645072900758-ee1232a3/manifest-files.json
    2022-02-17 04:46:17         24 AWSDynamoDB/01645072900758-ee1232a3/manifest-files.md5
    2022-02-17 04:46:17        639 AWSDynamoDB/01645072900758-ee1232a3/manifest-summary.json
    2022-02-17 04:46:18         24 AWSDynamoDB/01645072900758-ee1232a3/manifest-summary.md5
    

执行迁移

由于已采用 Pub/Sub 传送,您可以推送在导出之后进行的任何表更改。

将导出的表复制到 Cloud Storage

  1. 在 Cloud Shell 中,创建一个 Cloud Storage 存储分区以接收从 Amazon S3 导出的文件。

    gcloud storage buckets create gs://${BUCKET}
    
  2. 将 Amazon S3 中的文件同步到 Cloud Storage 中。对于大多数复制操作,rsync 命令有效。如果导出的文件很大(数 GB 或更大),请使用 Cloud Storage Transfer Service 以在后台管理传输。

    gcloud storage rsync s3://${BUCKET} gs://${BUCKET} --recursive --delete-unmatched-destination-objects
    

批量导入数据

  1. 如需将导出文件中的数据写入 Spanner 表,请以示例 Apache Beam 代码运行一个 Dataflow 作业。

    cd dataflow
    mvn compile
    mvn exec:java \
    -Dexec.mainClass=com.example.spanner_migration.SpannerBulkWrite \
    -Pdataflow-runner \
    -Dexec.args="--project=GOOGLE_CLOUD_PROJECT \
                 --instanceId=spanner-migration \
                 --databaseId=migrationdb \
                 --table=Migration \
                 --importBucket=$BUCKET \
                 --runner=DataflowRunner \
                 --region=us-central1"
    
    1. 如需查看导入作业的进度,请在 Google Cloud 控制台中前往 Dataflow。

      转到 Dataflow

    2. 当作业正在运行时,您可以查看执行图以检查日志。点击状态显示为正在运行的作业。

      正在运行的导入作业

  2. 点击每个阶段以查看已处理的元素数量。当所有阶段都显示成功时,表示导入完成。在 Amazon DynamoDB 表中创建的相同数量的元素在每个阶段都显示为已处理。

    导入作业成功的阶段

  3. 验证目标 Spanner 表中的记录数与 Amazon DynamoDB 表中的条目数是否匹配。

    aws dynamodb describe-table --table-name Migration --query Table.ItemCount
    gcloud spanner databases execute-sql migrationdb \ --instance=spanner-migration --sql="select count(*) from Migration"

    将出现以下输出:

    $ aws dynamodb describe-table --table-name Migration --query Table.ItemCount
    25000
    $ gcloud spanner databases execute-sql migrationdb --instance=spanner-migration --sql="select count(*) from Migration"
    25000
    
  4. 对每个表中的随机条目进行采样以确保数据一致。

    gcloud spanner databases execute-sql migrationdb \
        --instance=spanner-migration \
        --sql="select * from Migration limit 1"
    

    此时会显示以下输出:

     Username: aadams4495
     PointsEarned: 5247
     ReminderDate: 2022-03-14
     Subscribed: True
     Zipcode: 58057
    
  5. 使用上一步中从 Spanner 查询返回的同一 Username 来查询 Amazon DynamoDB 表,例如 aallen2538。该值特定于数据库中的示例数据。

    aws dynamodb get-item --table-name Migration \
        --key '{"Username": {"S": "aadams4495"}}'
    

    其他字段的值应与 Spanner 输出中的值匹配。此时会显示以下输出:

    {
        "Item": {
            "Username": {
                "S": "aadams4495"
            },
            "ReminderDate": {
                "S": "2018-06-18"
            },
            "PointsEarned": {
                "N": "1606"
            },
            "Zipcode": {
                "N": "17303"
            },
            "Subscribed": {
                "BOOL": false
            }
        }
    }
    

复制新更改

批量导入作业完成后,您可以设置流式作业以将源表中的现行更新写入 Spanner。您可以订阅 Pub/Sub 中的事件并将其写入 Spanner

您创建的 Lambda 函数配置为捕获对源 Amazon DynamoDB 表进行的更改并将这些更改发布到 Pub/Sub。

  1. 订阅 AWS Lambda 将向其发送事件的 Pub/Sub 主题。

    gcloud pubsub subscriptions create spanner-migration \
        --topic spanner-migration
    

    此时会显示以下输出:

    Created subscription [projects/your-project/subscriptions/spanner-migration].
    
  2. 如需以流式方式将传送到 Pub/Sub 的更改写入 Spanner 表,请在 Cloud Shell 中运行 Dataflow 作业。

    mvn exec:java \
    -Dexec.mainClass=com.example.spanner_migration.SpannerStreamingWrite \
    -Pdataflow-runner \
    -Dexec.args="--project=GOOGLE_CLOUD_PROJECT \
                 --instanceId=spanner-migration \
                 --databaseId=migrationdb \
                 --table=Migration \
                 --experiments=allow_non_updatable_job \
    --subscription=projects/GOOGLE_CLOUD_PROJECT/subscriptions/spanner-migration \
    --runner=DataflowRunner \
    --region=us-central1"
    
    1. 批量加载步骤类似,如需查看作业进度,请在 Google Cloud 控制台中前往 Dataflow。

      转到 Dataflow

    2. 点击状态正在运行的作业。

      正在运行的作业

      处理图显示与之前类似的输出,但每个已处理的条目都会在状态窗口中计数。系统延迟时间是一个粗略估计值,大致说明更改体现在 Spanner 表中之前预计会延迟多长时间。

      时间延迟造成的运行中过程

您在批量加载阶段运行的 Dataflow 作业是一组有限的输入,也称为“有界”数据集。此 Dataflow 作业使用 Pub/Sub 作为流式源,并且被视为“无界”。如需详细了解这两种类型的源,请查看 Apache Beam 编程指南中关于 PCollections 的部分。此步骤中的 Dataflow 作业应保持活跃状态,因此在完成时不会终止。流式 Dataflow 作业仍处于正在运行状态,而不是成功状态。

验证复制

请对源表进行一些更改,以验证更改是否会复制到 Spanner 表。

  1. 在 Spanner 中查询一个不存在的行。

    gcloud spanner databases execute-sql migrationdb \
        --instance=spanner-migration \
        --sql="SELECT * FROM Migration WHERE Username='my-test-username'"
    

    该操作不会返回任何结果。

  2. 使用您在 Spanner 查询中所使用的键在 Amazon DynamoDB 中创建一条记录。如果命令成功运行,则不会有输出。

    aws dynamodb put-item \
        --table-name Migration \
        --item '{"Username" : {"S" : "my-test-username"}, "Subscribed" : {"BOOL" : false}}'
    
  3. 再次运行同一查询以验证该行现在出现在 Spanner 中。

    gcloud spanner databases execute-sql migrationdb \
        --instance=spanner-migration \
        --sql="SELECT * FROM Migration WHERE Username='my-test-username'"
    

    输出会显示插入的行:

    Username: my-test-username
    PointsEarned: None
    ReminderDate: None
    Subscribed: False
    Zipcode:
    
  4. 更改原始条目中的某些属性并更新 Amazon DynamoDB 表。

    aws dynamodb update-item \
        --table-name Migration \
        --key '{"Username": {"S":"my-test-username"}}' \
        --update-expression "SET PointsEarned = :pts, Subscribed = :sub" \
        --expression-attribute-values '{":pts": {"N":"4500"}, ":sub": {"BOOL":true}}'\
        --return-values ALL_NEW
    

    您将会看到类似于以下内容的输出:

    {
        "Attributes": {
            "Username": {
                "S": "my-test-username"
            },
            "PointsEarned": {
                "N": "4500"
            },
            "Subscribed": {
                "BOOL": true
            }
        }
    }
    
  5. 验证更改已传播到 Spanner 表。

    gcloud spanner databases execute-sql migrationdb \
        --instance=spanner-migration \
        --sql="SELECT * FROM Migration WHERE Username='my-test-username'"
    

    输出如下所示:

    Username          PointsEarned  ReminderDate  Subscribed  Zipcode
    my-test-username  4500          None          True
    
  6. 从 Amazon DynamoDB 源表中删除测试条目。

    aws dynamodb delete-item \
        --table-name Migration \
        --key '{"Username": {"S":"my-test-username"}}'
    
  7. 验证对应的行已从 Spanner 表中删除。此更改传播后,以下命令将返回零行:

    gcloud spanner databases execute-sql migrationdb \
        --instance=spanner-migration \
        --sql="SELECT * FROM Migration WHERE Username='my-test-username'"
    

使用交错表

Spanner 支持交错表的概念。这是一种设计模型,其中顶级条目有多个与它相关的嵌套条目,例如客户及其订单,或玩家及其游戏得分。如果您的 Amazon DynamoDB 源表使用的主键是由哈希键和范围键组成,则可以建模一个交错表架构,如下图所示。利用此结构,您在联接父表中的字段时能够高效地查询交错表。

用户表与订单表对比

应用二级索引

最佳做法是在加载数据之后再对 Spanner 表应用二级索引。由于复制操作正在进行,您可以设置二级索引来加快查询速度。与 Spanner 表一样,Spanner 的二级索引也完全一致。它们并不具备最终一致性,这在许多 NoSQL 数据库中很常见。此功能有助于简化您的应用设计。

运行不使用任何索引的查询。在给定的列值的情况下,查找的是前 N 个出现的条目。这是 Amazon DynamoDB 中用于提高数据库效率的常用查询。

  1. 转到 Spanner。

    转到 Spanner

  2. 点击 Spanner Studio

    查询按钮

  3. 查询字段中,输入以下查询,然后点击运行查询

    SELECT Username,PointsEarned
      FROM Migration
     WHERE Subscribed=true
       AND ReminderDate > DATE_SUB(DATE(current_timestamp()), INTERVAL 14 DAY)
     ORDER BY ReminderDate DESC
     LIMIT 10
    

    查询运行后,点击说明并记下扫描的行数返回的行数。如果没有索引,Spanner 将为了返回一小部分与查询匹配的数据而扫描整个表。

    扫描的行数与返回的行数对比

  4. 如果这代表常见查询,请在 Subscribed 和 ReminderDate 列上创建复合索引。在 Spanner 控制台上,在左侧导航窗格中选择索引,然后点击创建索引

  5. 在文本框中,输入索引定义。

    CREATE INDEX SubscribedDateDesc
    ON Migration (
      Subscribed,
      ReminderDate DESC
    )
    
  6. 要在后台开始构建数据库,请点击创建

    正在进行架构更新

  7. 创建索引后,再次运行查询并添加索引。

    SELECT Username,PointsEarned
      FROM Migration@{FORCE_INDEX=SubscribedDateDesc}
     WHERE Subscribed=true
       AND ReminderDate > DATE_SUB(DATE(current_timestamp()), INTERVAL 14 DAY)
     ORDER BY ReminderDate DESC
     LIMIT 10
    

    再次检查查询说明。请注意,扫描的行数已减少。每一步返回的行数都与查询返回的数量匹配。

    查询的说明

交错索引

您可以在 Spanner 中设置交错索引。上一部分所述的二级索引位于数据库层次结构的根部,它们使用索引的方式与传统数据库相同。交错索引位于其交错行的上下文内。如需详细了解在何处应用交错索引,请参阅索引选项

针对您的数据模型进行调整

为了使本教程的迁移部分适应您自己的情况,请修改 Apache Beam 源文件。进行实际迁移期间切勿更改源架构,否则可能会丢失数据。

  1. 如需解析传入的 JSON 并构建变化,请使用 GSON。调整 JSON 定义以匹配您的数据。

    public static class Record implements Serializable {
    
      private Item Item;
    
    }
    
    public static class Item implements Serializable {
    
      private Username Username;
      private PointsEarned PointsEarned;
      private Subscribed Subscribed;
      private ReminderDate ReminderDate;
      private Zipcode Zipcode;
    
    }
    
    public static class Username implements Serializable {
    
      private String S;
    
    }
    
    public static class PointsEarned implements Serializable {
    
      private String N;
    
    }
    
    public static class Subscribed implements Serializable {
    
      private String BOOL;
    
    }
    
    public static class ReminderDate implements Serializable {
    
      private String S;
    
    }
    
    public static class Zipcode implements Serializable {
    
      private String N;
    
    }
  2. 调整对应的 JSON 映射。

    mutation.set("Username").to(record.Item.Username.S);
    
    Optional.ofNullable(record.Item.Zipcode).ifPresent(x -> {
      mutation.set("Zipcode").to(Integer.parseInt(x.N));
    });
    
    Optional.ofNullable(record.Item.Subscribed).ifPresent(x -> {
      mutation.set("Subscribed").to(Boolean.parseBoolean(x.BOOL));
    });
    
    Optional.ofNullable(record.Item.ReminderDate).ifPresent(x -> {
      mutation.set("ReminderDate").to(Date.parseDate(x.S));
    });
    
    Optional.ofNullable(record.Item.PointsEarned).ifPresent(x -> {
      mutation.set("PointsEarned").to(Integer.parseInt(x.N));
    });

在前面的步骤中,您修改了 Apache Beam 源代码以进行批量导入。请以类似的方式修改流水线流式传输部分的源代码。最后,调整 Spanner 目标数据库的表创建脚本、架构和索引。

清理

为避免因本教程中使用的资源导致您的 Google Cloud 账号产生费用,请删除包含这些资源的项目,或者保留项目,只删除单个资源。

删除项目

  1. In the Google Cloud console, go to the Manage resources page.

    Go to Manage resources

  2. In the project list, select the project that you want to delete, and then click Delete.
  3. In the dialog, type the project ID, and then click Shut down to delete the project.

删除 AWS 资源

如果您的 AWS 账号不仅仅用于本教程,那么在删除以下资源时,请务必谨慎:

  1. 删除名为 MigrationDynamoDB 表
  2. 删除您在迁移步骤中创建的 Amazon S3 存储桶Lambda 函数
  3. 最后是您在本教程期间创建的 AWS IAM 用户。

后续步骤