BigQuery 连接器默认安装在 /usr/lib/hadoop/lib/
下的所有 Dataproc 1.0-1.2 集群节点上。Spark 和 PySpark 环境中均可使用该连接器。
Dataproc 映像版本 1.5 及更高版本:BigQuery Dataproc 中默认未安装连接器 映像版本 1.5 及更高版本。 如需将该连接器用于这些版本,请执行以下操作:
通过初始化操作安装 BigQuery 连接器
提交作业时,在
jars
参数中指定 BigQuery 连接器:--jars=gs://hadoop-lib/bigquery/bigquery-connector-hadoop3-latest.jar
在应用程序的 jar-with-dependencies 中包含 BigQuery 连接器类
避免冲突:如果您的应用使用的连接器版本与 Dataproc 集群上部署的连接器版本不同,则您必须执行以下操作之一:
使用初始化操作创建一个新集群,此操作可安装应用使用的连接器版本;或者
包含和 搬迁 您当前所用版本的连接器类和连接器依赖项 复制到您应用的 jar 中,以避免连接器之间发生冲突 版本和您在 Dataproc 中部署的连接器版本 (请参阅 Maven 中依赖项重定位的示例)。
GsonBigQueryInputFormat 类
GsonBigQueryInputFormat
通过以下主要操作为 Hadoop 提供了 JsonObject 格式的 BigQuery 对象:
- 使用用户指定的查询来选择 BigQuery 对象
- 在 Hadoop 节点之间均匀拆分查询结果
- 将拆分结果解析为 java 对象以传递给 mapper。
Hadoop Mapper 类可接收以
JsonObject
形式表示的每个选定 BigQuery 对象。
BigQueryInputFormat
类通过 Hadoop InputFormat 类的扩展程序提供了 BigQuery 记录的访问权限。如需使用 BigQueryInputFormat 类,请执行以下操作:
要在 Hadoop 配置中设置参数,您必须将几行代码添加到主要 Hadoop 作业中。
必须将 InputFormat 类设置为
GsonBigQueryInputFormat
。
以下各部分介绍如何满足这些要求。
输入参数
- QualifiedInputTableId
- 要读取的 BigQuery 表,格式如下:
optional-projectId:datasetId.tableId
示例:publicdata:samples.shakespeare
- projectId
- 发生所有输入操作的 BigQuery projectId。
示例:my-first-cloud-project
// Set the job-level projectId. conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId); // Configure input parameters. BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId); // Set InputFormat. job.setInputFormatClass(GsonBigQueryInputFormat.class);
注意:
job
指的是org.apache.hadoop.mapreduce.Job
(表示要运行的 Hadoop 作业)。conf
表示 Hadoop 作业的org.apache.hadoop.Configuration
。
Mapper
GsonBigQueryInputFormat
类从 BigQuery 读取数据并传递
每次一个 BigQuery 对象作为 Hadoop Mapper
的输入
函数。输入采用对的形式,其中包含以下内容:
LongWritable
,记录编号JsonObject
,Json 格式的 BigQuery 记录
Mapper
接受 LongWritable
和 JsonObject pair
,
输入。
以下是 Mapper
中针对
sample WordCount 作业。
// private static final LongWritable ONE = new LongWritable(1); // The configuration key used to specify the BigQuery field name // ("column name"). public static final String WORDCOUNT_WORD_FIELDNAME_KEY = "mapred.bq.samples.wordcount.word.key"; // Default value for the configuration entry specified by // WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in // publicdata:samples.shakespeare or 'repository_name' // in publicdata:samples.github_timeline. public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word"; /** * The mapper function for WordCount. */ public static class Map extends Mapper <LongWritable, JsonObject, Text, LongWritable> { private static final LongWritable ONE = new LongWritable(1); private Text word = new Text(); private String wordKey; @Override public void setup(Context context) throws IOException, InterruptedException { // Find the runtime-configured key for the field name we're looking for // in the map task. Configuration conf = context.getConfiguration(); wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY, WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT); } @Override public void map(LongWritable key, JsonObject value, Context context) throws IOException, InterruptedException { JsonElement countElement = value.get(wordKey); if (countElement != null) { String wordInRecord = countElement.getAsString(); word.set(wordInRecord); // Write out the key, value pair (write out a value of 1, which will be // added to the total count for this word in the Reducer). context.write(word, ONE); } } }
IndirectBigQueryOutputFormat 类
IndirectBigQueryOutputFormat
允许 Hadoop 将 JsonObject
值直接写入 BigQuery 表。该类通过 Hadoop OutputFormat 类的扩展程序提供了 BigQuery 记录的访问权限。要正确使用它,您必须在 Hadoop 配置中设置几个参数,并且必须将 OutputFormat 类设置为 IndirectBigQueryOutputFormat
。要设置的参数示例以及正确使用 IndirectBigQueryOutputFormat
所需的代码行如下。
输出参数
- projectId
- 发生所有输出操作的 BigQuery projectId。
示例: “my-first-cloud-project” - QualifiedOutputTableId
- 将最终作业结果写入到的 BigQuery 数据集,格式为 optional-projectId:datasetId.tableId。
datasetId 应已经存在于您的项目中。
将在 BigQuery 中为临时结果创建 outputDatasetId_hadoop_temporary 数据集。确保这与现有数据集不发生冲突。
示例:
test_output_dataset.wordcount_output
my-first-cloud-project:test_output_dataset.wordcount_output
- outputTableFieldSchema
- 定义了输出 BigQuery 表的架构的架构
- GcsOutputPath
- 存储临时 Cloud Storage 数据的输出路径 (
gs://bucket/dir/
)
// Define the schema we will be using for the output BigQuery table. List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>(); outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING")); outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER")); TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema); // Create the job and get its configuration. Job job = new Job(parser.getConfiguration(), "wordcount"); Configuration conf = job.getConfiguration(); // Set the job-level projectId. conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId); // Configure input. BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId); // Configure output. BigQueryOutputConfiguration.configure( conf, outputQualifiedTableId, outputSchema, outputGcsPath, BigQueryFileFormat.NEWLINE_DELIMITED_JSON, TextOutputFormat.class); // (Optional) Configure the KMS key used to encrypt the output table. BigQueryOutputConfiguration.setKmsKeyName( conf, "projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1"); );
Reducer
IndirectBigQueryOutputFormat
类向 BigQuery 写入内容。
它将一个键和一个 JsonObject
值作为输入,并只将 JsonObject 值写入 BigQuery(该键被忽略)。JsonObject
应包含 Json 格式的 BigQuery 记录。缩减器应输出任意类型的键(在我们的示例 WordCount 作业中使用了 NullWritable
)和 JsonObject
值对。示例 WordCount 作业的 Reducer 如下所示。
/** * Reducer function for WordCount. */ public static class Reduce extends Reducer<Text, LongWritable, JsonObject, NullWritable> { @Override public void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException { // Add up the values to get a total number of occurrences of our word. long count = 0; for (LongWritable val : values) { count = count + val.get(); } JsonObject jsonObject = new JsonObject(); jsonObject.addProperty("Word", key.toString()); jsonObject.addProperty("Count", count); // Key does not matter. context.write(jsonObject, NullWritable.get()); } }
清理
作业完成后,请清理 Cloud Storage 导出路径。
job.waitForCompletion(true); GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());
您可以在 BigQuery 输出表中 Google Cloud 控制台。
示例 WordCount 作业的完整代码
下面的代码是一个简单的 WordCount 作业示例,它汇总了 BigQuery 中对象的字数。
package com.google.cloud.hadoop.io.bigquery.samples;
import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.hadoop.io.bigquery.BigQueryConfiguration;
import com.google.cloud.hadoop.io.bigquery.BigQueryFileFormat;
import com.google.cloud.hadoop.io.bigquery.GsonBigQueryInputFormat;
import com.google.cloud.hadoop.io.bigquery.output.BigQueryOutputConfiguration;
import com.google.cloud.hadoop.io.bigquery.output.IndirectBigQueryOutputFormat;
import com.google.gson.JsonElement;
import com.google.gson.JsonObject;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
/**
* Sample program to run the Hadoop Wordcount example over tables in BigQuery.
*/
public class WordCount {
// The configuration key used to specify the BigQuery field name
// ("column name").
public static final String WORDCOUNT_WORD_FIELDNAME_KEY =
"mapred.bq.samples.wordcount.word.key";
// Default value for the configuration entry specified by
// WORDCOUNT_WORD_FIELDNAME_KEY. Examples: 'word' in
// publicdata:samples.shakespeare or 'repository_name'
// in publicdata:samples.github_timeline.
public static final String WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT = "word";
// Guava might not be available, so define a null / empty helper:
private static boolean isStringNullOrEmpty(String toTest) {
return toTest == null || "".equals(toTest);
}
/**
* The mapper function for WordCount. For input, it consumes a LongWritable
* and JsonObject as the key and value. These correspond to a row identifier
* and Json representation of the row's values/columns.
* For output, it produces Text and a LongWritable as the key and value.
* These correspond to the word and a count for the number of times it has
* occurred.
*/
public static class Map
extends Mapper <LongWritable, JsonObject, Text, LongWritable> {
private static final LongWritable ONE = new LongWritable(1);
private Text word = new Text();
private String wordKey;
@Override
public void setup(Context context)
throws IOException, InterruptedException {
// Find the runtime-configured key for the field name we're looking for in
// the map task.
Configuration conf = context.getConfiguration();
wordKey = conf.get(WORDCOUNT_WORD_FIELDNAME_KEY, WORDCOUNT_WORD_FIELDNAME_VALUE_DEFAULT);
}
@Override
public void map(LongWritable key, JsonObject value, Context context)
throws IOException, InterruptedException {
JsonElement countElement = value.get(wordKey);
if (countElement != null) {
String wordInRecord = countElement.getAsString();
word.set(wordInRecord);
// Write out the key, value pair (write out a value of 1, which will be
// added to the total count for this word in the Reducer).
context.write(word, ONE);
}
}
}
/**
* Reducer function for WordCount. For input, it consumes the Text and
* LongWritable that the mapper produced. For output, it produces a JsonObject
* and NullWritable. The JsonObject represents the data that will be
* loaded into BigQuery.
*/
public static class Reduce
extends Reducer<Text, LongWritable, JsonObject, NullWritable> {
@Override
public void reduce(Text key, Iterable<LongWritable> values, Context context)
throws IOException, InterruptedException {
// Add up the values to get a total number of occurrences of our word.
long count = 0;
for (LongWritable val : values) {
count = count + val.get();
}
JsonObject jsonObject = new JsonObject();
jsonObject.addProperty("Word", key.toString());
jsonObject.addProperty("Count", count);
// Key does not matter.
context.write(jsonObject, NullWritable.get());
}
}
/**
* Configures and runs the main Hadoop job. Takes a String[] of 5 parameters:
* [ProjectId] [QualifiedInputTableId] [InputTableFieldName]
* [QualifiedOutputTableId] [GcsOutputPath]
*
* ProjectId - Project under which to issue the BigQuery
* operations. Also serves as the default project for table IDs that don't
* specify a project for the table.
*
* QualifiedInputTableId - Input table ID of the form
* (Optional ProjectId):[DatasetId].[TableId]
*
* InputTableFieldName - Name of the field to count in the
* input table, e.g., 'word' in publicdata:samples.shakespeare or
* 'repository_name' in publicdata:samples.github_timeline.
*
* QualifiedOutputTableId - Input table ID of the form
* (Optional ProjectId):[DatasetId].[TableId]
*
* GcsOutputPath - The output path to store temporary
* Cloud Storage data, e.g., gs://bucket/dir/
*
* @param args a String[] containing ProjectId, QualifiedInputTableId,
* InputTableFieldName, QualifiedOutputTableId, and GcsOutputPath.
* @throws IOException on IO Error.
* @throws InterruptedException on Interrupt.
* @throws ClassNotFoundException if not all classes are present.
*/
public static void main(String[] args)
throws IOException, InterruptedException, ClassNotFoundException {
// GenericOptionsParser is a utility to parse command line arguments
// generic to the Hadoop framework. This example doesn't cover the specifics,
// but recognizes several standard command line arguments, enabling
// applications to easily specify a NameNode, a ResourceManager, additional
// configuration resources, etc.
GenericOptionsParser parser = new GenericOptionsParser(args);
args = parser.getRemainingArgs();
// Make sure we have the right parameters.
if (args.length != 5) {
System.out.println(
"Usage: hadoop jar bigquery_wordcount.jar [ProjectId] [QualifiedInputTableId] "
+ "[InputTableFieldName] [QualifiedOutputTableId] [GcsOutputPath]\n"
+ " ProjectId - Project under which to issue the BigQuery operations. Also serves "
+ "as the default project for table IDs that don't explicitly specify a project for "
+ "the table.\n"
+ " QualifiedInputTableId - Input table ID of the form "
+ "(Optional ProjectId):[DatasetId].[TableId]\n"
+ " InputTableFieldName - Name of the field to count in the input table, e.g., "
+ "'word' in publicdata:samples.shakespeare or 'repository_name' in "
+ "publicdata:samples.github_timeline.\n"
+ " QualifiedOutputTableId - Input table ID of the form "
+ "(Optional ProjectId):[DatasetId].[TableId]\n"
+ " GcsOutputPath - The output path to store temporary Cloud Storage data, e.g., "
+ "gs://bucket/dir/");
System.exit(1);
}
// Get the individual parameters from the command line.
String projectId = args[0];
String inputQualifiedTableId = args[1];
String inputTableFieldId = args[2];
String outputQualifiedTableId = args[3];
String outputGcsPath = args[4];
// Define the schema we will be using for the output BigQuery table.
List<TableFieldSchema> outputTableFieldSchema = new ArrayList<TableFieldSchema>();
outputTableFieldSchema.add(new TableFieldSchema().setName("Word").setType("STRING"));
outputTableFieldSchema.add(new TableFieldSchema().setName("Count").setType("INTEGER"));
TableSchema outputSchema = new TableSchema().setFields(outputTableFieldSchema);
// Create the job and get its configuration.
Job job = new Job(parser.getConfiguration(), "wordcount");
Configuration conf = job.getConfiguration();
// Set the job-level projectId.
conf.set(BigQueryConfiguration.PROJECT_ID_KEY, projectId);
// Configure input.
BigQueryConfiguration.configureBigQueryInput(conf, inputQualifiedTableId);
// Configure output.
BigQueryOutputConfiguration.configure(
conf,
outputQualifiedTableId,
outputSchema,
outputGcsPath,
BigQueryFileFormat.NEWLINE_DELIMITED_JSON,
TextOutputFormat.class);
// (Optional) Configure the KMS key used to encrypt the output table.
BigQueryOutputConfiguration.setKmsKeyName(
conf,
"projects/myproject/locations/us-west1/keyRings/r1/cryptoKeys/k1");
conf.set(WORDCOUNT_WORD_FIELDNAME_KEY, inputTableFieldId);
// This helps Hadoop identify the Jar which contains the mapper and reducer
// by specifying a class in that Jar. This is required if the jar is being
// passed on the command line to Hadoop.
job.setJarByClass(WordCount.class);
// Tell the job what data the mapper will output.
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(LongWritable.class);
job.setMapperClass(Map.class);
job.setReducerClass(Reduce.class);
job.setInputFormatClass(GsonBigQueryInputFormat.class);
// Instead of using BigQueryOutputFormat, we use the newer
// IndirectBigQueryOutputFormat, which works by first buffering all the data
// into a Cloud Storage temporary file, and then on commitJob, copies all data from
// Cloud Storage into BigQuery in one operation. Its use is recommended for large jobs
// since it only requires one BigQuery "load" job per Hadoop/Spark job, as
// compared to BigQueryOutputFormat, which performs one BigQuery job for each
// Hadoop/Spark task.
job.setOutputFormatClass(IndirectBigQueryOutputFormat.class);
job.waitForCompletion(true);
// After the job completes, clean up the Cloud Storage export paths.
GsonBigQueryInputFormat.cleanupJob(job.getConfiguration(), job.getJobID());
// You can view word counts in the BigQuery output table at
// https://console.cloud.google.com/.
}
}
Java 版本
BigQuery 连接器需要 Java 8。
Apache Maven 依赖关系信息
<dependency> <groupId>com.google.cloud.bigdataoss</groupId> <artifactId>bigquery-connector</artifactId> <version>insert "hadoopX-X.X.X" connector version number here</version> </dependency>
如需了解详情,请参阅 BigQuery 连接器版本说明和 Javadoc 参考。