Modell zur Erläuterung des verwalteten Image-Containers hochladen

Lädt ein Modell zur Erläuterung des Image-verwalteten Containers mit der Methode "upload_model" hoch.

Codebeispiel

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import aiplatform_v1beta1


def upload_model_explain_image_managed_container_sample(
    project: str,
    display_name: str,
    container_spec_image_uri: str,
    artifact_uri: str,
    input_tensor_name: str,
    output_tensor_name: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.ModelServiceClient(client_options=client_options)

    # Container specification for deploying the model
    container_spec = {"image_uri": container_spec_image_uri, "command": [], "args": []}

    # The explainabilty method and corresponding parameters
    parameters = aiplatform_v1beta1.ExplanationParameters(
        {"xrai_attribution": {"step_count": 1}}
    )

    # The input tensor for feature attribution to the output
    # For single input model, y = f(x), this will be the serving input layer.
    input_metadata = aiplatform_v1beta1.ExplanationMetadata.InputMetadata(
        {
            "input_tensor_name": input_tensor_name,
            # Input is image data
            "modality": "image",
        }
    )

    # The output tensor to explain
    # For single output model, y = f(x), this will be the serving output layer.
    output_metadata = aiplatform_v1beta1.ExplanationMetadata.OutputMetadata(
        {"output_tensor_name": output_tensor_name}
    )

    # Assemble the explanation metadata
    metadata = aiplatform_v1beta1.ExplanationMetadata(
        inputs={"image": input_metadata}, outputs={"prediction": output_metadata}
    )

    # Assemble the explanation specification
    explanation_spec = aiplatform_v1beta1.ExplanationSpec(
        parameters=parameters, metadata=metadata
    )

    model = aiplatform_v1beta1.Model(
        display_name=display_name,
        # The Cloud Storage location of the custom model
        artifact_uri=artifact_uri,
        explanation_spec=explanation_spec,
        container_spec=container_spec,
    )
    parent = f"projects/{project}/locations/{location}"
    response = client.upload_model(parent=parent, model=model)
    print("Long running operation:", response.operation.name)
    upload_model_response = response.result(timeout=timeout)
    print("upload_model_response:", upload_model_response)

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.