Create a data labeling job for image segmentation

Creates a data labeling job for image segmentation using the create_data_labeling_job method.

Code sample


Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def create_data_labeling_job_image_segmentation_sample(
    project: str,
    display_name: str,
    dataset: str,
    instruction_uri: str,
    inputs_schema_uri: str,
    annotation_spec: dict,
    annotation_set_name: str,
    location: str = "us-central1",
    api_endpoint: str = "",
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    inputs_dict = {"annotationSpecColors": [annotation_spec]}
    inputs = json_format.ParseDict(inputs_dict, Value())

    data_labeling_job = {
        "display_name": display_name,
        # Full resource name: projects/{project}/locations/{location}/datasets/{dataset_id}
        "datasets": [dataset],
        "labeler_count": 1,
        "instruction_uri": instruction_uri,
        "inputs_schema_uri": inputs_schema_uri,
        "inputs": inputs,
        "annotation_labels": {
            "": annotation_set_name
    parent = f"projects/{project}/locations/{location}"
    response = client.create_data_labeling_job(
        parent=parent, data_labeling_job=data_labeling_job
    print("response:", response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.