Create a hyperparameter tuning job for python package

Creates a hyperparameter tuning job for python package using the create_hyperparameter_tuning_job method.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Java

To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Java API reference documentation.

import com.google.cloud.aiplatform.v1.AcceleratorType;
import com.google.cloud.aiplatform.v1.CustomJobSpec;
import com.google.cloud.aiplatform.v1.HyperparameterTuningJob;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.PythonPackageSpec;
import com.google.cloud.aiplatform.v1.StudySpec;
import com.google.cloud.aiplatform.v1.StudySpec.MetricSpec;
import com.google.cloud.aiplatform.v1.StudySpec.MetricSpec.GoalType;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ConditionalParameterSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ConditionalParameterSpec.DiscreteValueCondition;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.DiscreteValueSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.DoubleValueSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ScaleType;
import com.google.cloud.aiplatform.v1.WorkerPoolSpec;
import java.io.IOException;
import java.util.Arrays;

public class CreateHyperparameterTuningJobPythonPackageSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "PROJECT";
    String displayName = "DISPLAY_NAME";
    String executorImageUri = "EXECUTOR_IMAGE_URI";
    String packageUri = "PACKAGE_URI";
    String pythonModule = "PYTHON_MODULE";
    createHyperparameterTuningJobPythonPackageSample(
        project, displayName, executorImageUri, packageUri, pythonModule);
  }

  static void createHyperparameterTuningJobPythonPackageSample(
      String project,
      String displayName,
      String executorImageUri,
      String packageUri,
      String pythonModule)
      throws IOException {
    JobServiceSettings settings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();
    String location = "us-central1";

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient client = JobServiceClient.create(settings)) {
      // study spec
      MetricSpec metric =
          MetricSpec.newBuilder().setMetricId("val_rmse").setGoal(GoalType.MINIMIZE).build();

      // decay
      DoubleValueSpec doubleValueSpec =
          DoubleValueSpec.newBuilder().setMinValue(1e-07).setMaxValue(1).build();
      ParameterSpec parameterDecaySpec =
          ParameterSpec.newBuilder()
              .setParameterId("decay")
              .setDoubleValueSpec(doubleValueSpec)
              .setScaleType(ScaleType.UNIT_LINEAR_SCALE)
              .build();
      Double[] decayValues = {32.0, 64.0};
      DiscreteValueCondition discreteValueDecay =
          DiscreteValueCondition.newBuilder().addAllValues(Arrays.asList(decayValues)).build();
      ConditionalParameterSpec conditionalParameterDecay =
          ConditionalParameterSpec.newBuilder()
              .setParameterSpec(parameterDecaySpec)
              .setParentDiscreteValues(discreteValueDecay)
              .build();

      // learning rate
      ParameterSpec parameterLearningSpec =
          ParameterSpec.newBuilder()
              .setParameterId("learning_rate")
              .setDoubleValueSpec(doubleValueSpec) // Use the same min/max as for decay
              .setScaleType(ScaleType.UNIT_LINEAR_SCALE)
              .build();

      Double[] learningRateValues = {4.0, 8.0, 16.0};
      DiscreteValueCondition discreteValueLearning =
          DiscreteValueCondition.newBuilder()
              .addAllValues(Arrays.asList(learningRateValues))
              .build();
      ConditionalParameterSpec conditionalParameterLearning =
          ConditionalParameterSpec.newBuilder()
              .setParameterSpec(parameterLearningSpec)
              .setParentDiscreteValues(discreteValueLearning)
              .build();

      // batch size
      Double[] batchSizeValues = {4.0, 8.0, 16.0, 32.0, 64.0, 128.0};

      DiscreteValueSpec discreteValueSpec =
          DiscreteValueSpec.newBuilder().addAllValues(Arrays.asList(batchSizeValues)).build();
      ParameterSpec parameter =
          ParameterSpec.newBuilder()
              .setParameterId("batch_size")
              .setDiscreteValueSpec(discreteValueSpec)
              .setScaleType(ScaleType.UNIT_LINEAR_SCALE)
              .addConditionalParameterSpecs(conditionalParameterDecay)
              .addConditionalParameterSpecs(conditionalParameterLearning)
              .build();

      // trial_job_spec
      MachineSpec machineSpec =
          MachineSpec.newBuilder()
              .setMachineType("n1-standard-4")
              .setAcceleratorType(AcceleratorType.NVIDIA_TESLA_K80)
              .setAcceleratorCount(1)
              .build();

      PythonPackageSpec pythonPackageSpec =
          PythonPackageSpec.newBuilder()
              .setExecutorImageUri(executorImageUri)
              .addPackageUris(packageUri)
              .setPythonModule(pythonModule)
              .build();

      WorkerPoolSpec workerPoolSpec =
          WorkerPoolSpec.newBuilder()
              .setMachineSpec(machineSpec)
              .setReplicaCount(1)
              .setPythonPackageSpec(pythonPackageSpec)
              .build();

      StudySpec studySpec =
          StudySpec.newBuilder()
              .addMetrics(metric)
              .addParameters(parameter)
              .setAlgorithm(StudySpec.Algorithm.RANDOM_SEARCH)
              .build();
      CustomJobSpec trialJobSpec =
          CustomJobSpec.newBuilder().addWorkerPoolSpecs(workerPoolSpec).build();
      // hyperparameter_tuning_job
      HyperparameterTuningJob hyperparameterTuningJob =
          HyperparameterTuningJob.newBuilder()
              .setDisplayName(displayName)
              .setMaxTrialCount(4)
              .setParallelTrialCount(2)
              .setStudySpec(studySpec)
              .setTrialJobSpec(trialJobSpec)
              .build();
      LocationName parent = LocationName.of(project, location);
      HyperparameterTuningJob response =
          client.createHyperparameterTuningJob(parent, hyperparameterTuningJob);
      System.out.format("response: %s\n", response);
      System.out.format("Name: %s\n", response.getName());
    }
  }
}

Python

To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Python API reference documentation.

from google.cloud import aiplatform


def create_hyperparameter_tuning_job_python_package_sample(
    project: str,
    display_name: str,
    executor_image_uri: str,
    package_uri: str,
    python_module: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)

    # study_spec
    metric = {
        "metric_id": "val_rmse",
        "goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE,
    }

    conditional_parameter_decay = {
        "parameter_spec": {
            "parameter_id": "decay",
            "double_value_spec": {"min_value": 1e-07, "max_value": 1},
            "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
        },
        "parent_discrete_values": {"values": [32, 64]},
    }
    conditional_parameter_learning_rate = {
        "parameter_spec": {
            "parameter_id": "learning_rate",
            "double_value_spec": {"min_value": 1e-07, "max_value": 1},
            "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
        },
        "parent_discrete_values": {"values": [4, 8, 16]},
    }
    parameter = {
        "parameter_id": "batch_size",
        "discrete_value_spec": {"values": [4, 8, 16, 32, 64, 128]},
        "scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
        "conditional_parameter_specs": [
            conditional_parameter_decay,
            conditional_parameter_learning_rate,
        ],
    }

    # trial_job_spec
    machine_spec = {
        "machine_type": "n1-standard-4",
        "accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80,
        "accelerator_count": 1,
    }
    worker_pool_spec = {
        "machine_spec": machine_spec,
        "replica_count": 1,
        "python_package_spec": {
            "executor_image_uri": executor_image_uri,
            "package_uris": [package_uri],
            "python_module": python_module,
            "args": [],
        },
    }

    # hyperparameter_tuning_job
    hyperparameter_tuning_job = {
        "display_name": display_name,
        "max_trial_count": 4,
        "parallel_trial_count": 2,
        "study_spec": {
            "metrics": [metric],
            "parameters": [parameter],
            "algorithm": aiplatform.gapic.StudySpec.Algorithm.RANDOM_SEARCH,
        },
        "trial_job_spec": {"worker_pool_specs": [worker_pool_spec]},
    }
    parent = f"projects/{project}/locations/{location}"
    response = client.create_hyperparameter_tuning_job(
        parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
    )
    print("response:", response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.