Creates a hyperparameter tuning job for python package using the create_hyperparameter_tuning_job method.
Explore further
For detailed documentation that includes this code sample, see the following:
Code sample
Java
To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Java API reference documentation.
import com.google.cloud.aiplatform.v1.AcceleratorType;
import com.google.cloud.aiplatform.v1.CustomJobSpec;
import com.google.cloud.aiplatform.v1.HyperparameterTuningJob;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.MachineSpec;
import com.google.cloud.aiplatform.v1.PythonPackageSpec;
import com.google.cloud.aiplatform.v1.StudySpec;
import com.google.cloud.aiplatform.v1.StudySpec.MetricSpec;
import com.google.cloud.aiplatform.v1.StudySpec.MetricSpec.GoalType;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ConditionalParameterSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ConditionalParameterSpec.DiscreteValueCondition;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.DiscreteValueSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.DoubleValueSpec;
import com.google.cloud.aiplatform.v1.StudySpec.ParameterSpec.ScaleType;
import com.google.cloud.aiplatform.v1.WorkerPoolSpec;
import java.io.IOException;
import java.util.Arrays;
public class CreateHyperparameterTuningJobPythonPackageSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String project = "PROJECT";
String displayName = "DISPLAY_NAME";
String executorImageUri = "EXECUTOR_IMAGE_URI";
String packageUri = "PACKAGE_URI";
String pythonModule = "PYTHON_MODULE";
createHyperparameterTuningJobPythonPackageSample(
project, displayName, executorImageUri, packageUri, pythonModule);
}
static void createHyperparameterTuningJobPythonPackageSample(
String project,
String displayName,
String executorImageUri,
String packageUri,
String pythonModule)
throws IOException {
JobServiceSettings settings =
JobServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
String location = "us-central1";
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (JobServiceClient client = JobServiceClient.create(settings)) {
// study spec
MetricSpec metric =
MetricSpec.newBuilder().setMetricId("val_rmse").setGoal(GoalType.MINIMIZE).build();
// decay
DoubleValueSpec doubleValueSpec =
DoubleValueSpec.newBuilder().setMinValue(1e-07).setMaxValue(1).build();
ParameterSpec parameterDecaySpec =
ParameterSpec.newBuilder()
.setParameterId("decay")
.setDoubleValueSpec(doubleValueSpec)
.setScaleType(ScaleType.UNIT_LINEAR_SCALE)
.build();
Double[] decayValues = {32.0, 64.0};
DiscreteValueCondition discreteValueDecay =
DiscreteValueCondition.newBuilder().addAllValues(Arrays.asList(decayValues)).build();
ConditionalParameterSpec conditionalParameterDecay =
ConditionalParameterSpec.newBuilder()
.setParameterSpec(parameterDecaySpec)
.setParentDiscreteValues(discreteValueDecay)
.build();
// learning rate
ParameterSpec parameterLearningSpec =
ParameterSpec.newBuilder()
.setParameterId("learning_rate")
.setDoubleValueSpec(doubleValueSpec) // Use the same min/max as for decay
.setScaleType(ScaleType.UNIT_LINEAR_SCALE)
.build();
Double[] learningRateValues = {4.0, 8.0, 16.0};
DiscreteValueCondition discreteValueLearning =
DiscreteValueCondition.newBuilder()
.addAllValues(Arrays.asList(learningRateValues))
.build();
ConditionalParameterSpec conditionalParameterLearning =
ConditionalParameterSpec.newBuilder()
.setParameterSpec(parameterLearningSpec)
.setParentDiscreteValues(discreteValueLearning)
.build();
// batch size
Double[] batchSizeValues = {4.0, 8.0, 16.0, 32.0, 64.0, 128.0};
DiscreteValueSpec discreteValueSpec =
DiscreteValueSpec.newBuilder().addAllValues(Arrays.asList(batchSizeValues)).build();
ParameterSpec parameter =
ParameterSpec.newBuilder()
.setParameterId("batch_size")
.setDiscreteValueSpec(discreteValueSpec)
.setScaleType(ScaleType.UNIT_LINEAR_SCALE)
.addConditionalParameterSpecs(conditionalParameterDecay)
.addConditionalParameterSpecs(conditionalParameterLearning)
.build();
// trial_job_spec
MachineSpec machineSpec =
MachineSpec.newBuilder()
.setMachineType("n1-standard-4")
.setAcceleratorType(AcceleratorType.NVIDIA_TESLA_K80)
.setAcceleratorCount(1)
.build();
PythonPackageSpec pythonPackageSpec =
PythonPackageSpec.newBuilder()
.setExecutorImageUri(executorImageUri)
.addPackageUris(packageUri)
.setPythonModule(pythonModule)
.build();
WorkerPoolSpec workerPoolSpec =
WorkerPoolSpec.newBuilder()
.setMachineSpec(machineSpec)
.setReplicaCount(1)
.setPythonPackageSpec(pythonPackageSpec)
.build();
StudySpec studySpec =
StudySpec.newBuilder()
.addMetrics(metric)
.addParameters(parameter)
.setAlgorithm(StudySpec.Algorithm.RANDOM_SEARCH)
.build();
CustomJobSpec trialJobSpec =
CustomJobSpec.newBuilder().addWorkerPoolSpecs(workerPoolSpec).build();
// hyperparameter_tuning_job
HyperparameterTuningJob hyperparameterTuningJob =
HyperparameterTuningJob.newBuilder()
.setDisplayName(displayName)
.setMaxTrialCount(4)
.setParallelTrialCount(2)
.setStudySpec(studySpec)
.setTrialJobSpec(trialJobSpec)
.build();
LocationName parent = LocationName.of(project, location);
HyperparameterTuningJob response =
client.createHyperparameterTuningJob(parent, hyperparameterTuningJob);
System.out.format("response: %s\n", response);
System.out.format("Name: %s\n", response.getName());
}
}
}
Python
To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Python API reference documentation.
from google.cloud import aiplatform
def create_hyperparameter_tuning_job_python_package_sample(
project: str,
display_name: str,
executor_image_uri: str,
package_uri: str,
python_module: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.JobServiceClient(client_options=client_options)
# study_spec
metric = {
"metric_id": "val_rmse",
"goal": aiplatform.gapic.StudySpec.MetricSpec.GoalType.MINIMIZE,
}
conditional_parameter_decay = {
"parameter_spec": {
"parameter_id": "decay",
"double_value_spec": {"min_value": 1e-07, "max_value": 1},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [32, 64]},
}
conditional_parameter_learning_rate = {
"parameter_spec": {
"parameter_id": "learning_rate",
"double_value_spec": {"min_value": 1e-07, "max_value": 1},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
},
"parent_discrete_values": {"values": [4, 8, 16]},
}
parameter = {
"parameter_id": "batch_size",
"discrete_value_spec": {"values": [4, 8, 16, 32, 64, 128]},
"scale_type": aiplatform.gapic.StudySpec.ParameterSpec.ScaleType.UNIT_LINEAR_SCALE,
"conditional_parameter_specs": [
conditional_parameter_decay,
conditional_parameter_learning_rate,
],
}
# trial_job_spec
machine_spec = {
"machine_type": "n1-standard-4",
"accelerator_type": aiplatform.gapic.AcceleratorType.NVIDIA_TESLA_K80,
"accelerator_count": 1,
}
worker_pool_spec = {
"machine_spec": machine_spec,
"replica_count": 1,
"python_package_spec": {
"executor_image_uri": executor_image_uri,
"package_uris": [package_uri],
"python_module": python_module,
"args": [],
},
}
# hyperparameter_tuning_job
hyperparameter_tuning_job = {
"display_name": display_name,
"max_trial_count": 4,
"parallel_trial_count": 2,
"study_spec": {
"metrics": [metric],
"parameters": [parameter],
"algorithm": aiplatform.gapic.StudySpec.Algorithm.RANDOM_SEARCH,
},
"trial_job_spec": {"worker_pool_specs": [worker_pool_spec]},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_hyperparameter_tuning_job(
parent=parent, hyperparameter_tuning_job=hyperparameter_tuning_job
)
print("response:", response)
What's next
To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.