Explain for tabular

Stay organized with collections Save and categorize content based on your preferences.

Gets explanation for tabular using the explain method.

Code sample


To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Python API reference documentation.

from typing import Dict

from google.cloud import aiplatform_v1beta1
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value

def explain_tabular_sample(
    project: str,
    endpoint_id: str,
    instance_dict: Dict,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.PredictionServiceClient(client_options=client_options)
    # The format of each instance should conform to the deployed model's prediction input schema.
    instance = json_format.ParseDict(instance_dict, Value())
    instances = [instance]
    # tabular models do not have additional parameters
    parameters_dict = {}
    parameters = json_format.ParseDict(parameters_dict, Value())
    endpoint = client.endpoint_path(
        project=project, location=location, endpoint=endpoint_id
    response = client.explain(
        endpoint=endpoint, instances=instances, parameters=parameters
    print(" deployed_model_id:", response.deployed_model_id)
    explanations = response.explanations
    for explanation in explanations:
        print(" explanation")
        # Feature attributions.
        attributions = explanation.attributions
        for attribution in attributions:
            print("  attribution")
            print("   baseline_output_value:", attribution.baseline_output_value)
            print("   instance_output_value:", attribution.instance_output_value)
            print("   output_display_name:", attribution.output_display_name)
            print("   approximation_error:", attribution.approximation_error)
            print("   output_name:", attribution.output_name)
            output_index = attribution.output_index
            for output_index in output_index:
                print("   output_index:", output_index)
    predictions = response.predictions
    for prediction in predictions:
        print(" prediction:", dict(prediction))

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.