Get a custom job

Stay organized with collections Save and categorize content based on your preferences.

Gets a custom job using the get_custom_job method.

Code sample

Node.js

To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Node.js API reference documentation.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 */

// const customJobId = 'YOUR_CUSTOM_JOB_ID';
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';

// Imports the Google Cloud Job Service Client library
const {JobServiceClient} = require('@google-cloud/aiplatform');

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};

// Instantiates a client
const jobServiceClient = new JobServiceClient(clientOptions);

async function getCustomJob() {
  // Configure the name resource
  const name = `projects/${project}/locations/${location}/customJobs/${customJobId}`;
  const request = {
    name,
  };

  // Get custom job request
  const [response] = await jobServiceClient.getCustomJob(request);

  console.log('Get custom job response');
  console.log(`\t${JSON.stringify(response)}`);
}
getCustomJob();

Python

To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Python API reference documentation.

from google.cloud import aiplatform


def get_custom_job_sample(
    project: str,
    custom_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.custom_job_path(
        project=project, location=location, custom_job=custom_job_id
    )
    response = client.get_custom_job(name=name)
    print("response:", response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.