Upload a model for explain tabular managed container

Uploads a model for explain tabular managed container using the upload_model method.

Code sample


To learn how to install and use the client library for Vertex AI, see Vertex AI client libraries. For more information, see the Vertex AI Python API reference documentation.

from google.cloud import aiplatform_v1beta1

def upload_model_explain_tabular_managed_container_sample(
    project: str,
    display_name: str,
    container_spec_image_uri: str,
    artifact_uri: str,
    input_tensor_name: str,
    output_tensor_name: str,
    feature_names: list,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
    timeout: int = 300,
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform_v1beta1.ModelServiceClient(client_options=client_options)

    # Container specification for deploying the model
    container_spec = {"image_uri": container_spec_image_uri, "command": [], "args": []}

    # The explainabilty method and corresponding parameters
    parameters = aiplatform_v1beta1.ExplanationParameters(
        {"xrai_attribution": {"step_count": 1}}

    # The input tensor for feature attribution to the output
    # For single input model, y = f(x), this will be the serving input layer.
    input_metadata = aiplatform_v1beta1.ExplanationMetadata.InputMetadata(
            "input_tensor_name": input_tensor_name,
            # Input is tabular data
            "modality": "numeric",
            # Assign feature names to the inputs for explanation
            "encoding": "BAG_OF_FEATURES",
            "index_feature_mapping": feature_names,

    # The output tensor to explain
    # For single output model, y = f(x), this will be the serving output layer.
    output_metadata = aiplatform_v1beta1.ExplanationMetadata.OutputMetadata(
        {"output_tensor_name": output_tensor_name}

    # Assemble the explanation metadata
    metadata = aiplatform_v1beta1.ExplanationMetadata(
        inputs={"features": input_metadata}, outputs={"prediction": output_metadata}

    # Assemble the explanation specification
    explanation_spec = aiplatform_v1beta1.ExplanationSpec(
        parameters=parameters, metadata=metadata

    model = aiplatform_v1beta1.Model(
        # The Cloud Storage location of the custom model
    parent = f"projects/{project}/locations/{location}"
    response = client.upload_model(parent=parent, model=model)
    print("Long running operation:", response.operation.name)
    upload_model_response = response.result(timeout=timeout)
    print("upload_model_response:", upload_model_response)

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.