Creates a training pipeline using the create_training_pipeline method.
Code sample
Java
Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.
To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
import com.google.cloud.aiplatform.v1.DeployedModelRef;
import com.google.cloud.aiplatform.v1.EnvVar;
import com.google.cloud.aiplatform.v1.FilterSplit;
import com.google.cloud.aiplatform.v1.FractionSplit;
import com.google.cloud.aiplatform.v1.InputDataConfig;
import com.google.cloud.aiplatform.v1.LocationName;
import com.google.cloud.aiplatform.v1.Model;
import com.google.cloud.aiplatform.v1.Model.ExportFormat;
import com.google.cloud.aiplatform.v1.ModelContainerSpec;
import com.google.cloud.aiplatform.v1.PipelineServiceClient;
import com.google.cloud.aiplatform.v1.PipelineServiceSettings;
import com.google.cloud.aiplatform.v1.Port;
import com.google.cloud.aiplatform.v1.PredefinedSplit;
import com.google.cloud.aiplatform.v1.PredictSchemata;
import com.google.cloud.aiplatform.v1.TimestampSplit;
import com.google.cloud.aiplatform.v1.TrainingPipeline;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import com.google.rpc.Status;
import java.io.IOException;
public class CreateTrainingPipelineSample {
public static void main(String[] args) throws IOException {
// TODO(developer): Replace these variables before running the sample.
String trainingPipelineDisplayName = "YOUR_TRAINING_PIPELINE_DISPLAY_NAME";
String project = "YOUR_PROJECT_ID";
String datasetId = "YOUR_DATASET_ID";
String trainingTaskDefinition = "YOUR_TRAINING_TASK_DEFINITION";
String modelDisplayName = "YOUR_MODEL_DISPLAY_NAME";
createTrainingPipelineSample(
project, trainingPipelineDisplayName, datasetId, trainingTaskDefinition, modelDisplayName);
}
static void createTrainingPipelineSample(
String project,
String trainingPipelineDisplayName,
String datasetId,
String trainingTaskDefinition,
String modelDisplayName)
throws IOException {
PipelineServiceSettings pipelineServiceSettings =
PipelineServiceSettings.newBuilder()
.setEndpoint("us-central1-aiplatform.googleapis.com:443")
.build();
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (PipelineServiceClient pipelineServiceClient =
PipelineServiceClient.create(pipelineServiceSettings)) {
String location = "us-central1";
LocationName locationName = LocationName.of(project, location);
String jsonString =
"{\"multiLabel\": false, \"modelType\": \"CLOUD\", \"budgetMilliNodeHours\": 8000,"
+ " \"disableEarlyStopping\": false}";
Value.Builder trainingTaskInputs = Value.newBuilder();
JsonFormat.parser().merge(jsonString, trainingTaskInputs);
InputDataConfig trainingInputDataConfig =
InputDataConfig.newBuilder().setDatasetId(datasetId).build();
Model model = Model.newBuilder().setDisplayName(modelDisplayName).build();
TrainingPipeline trainingPipeline =
TrainingPipeline.newBuilder()
.setDisplayName(trainingPipelineDisplayName)
.setTrainingTaskDefinition(trainingTaskDefinition)
.setTrainingTaskInputs(trainingTaskInputs)
.setInputDataConfig(trainingInputDataConfig)
.setModelToUpload(model)
.build();
TrainingPipeline trainingPipelineResponse =
pipelineServiceClient.createTrainingPipeline(locationName, trainingPipeline);
System.out.println("Create Training Pipeline Response");
System.out.format("Name: %s\n", trainingPipelineResponse.getName());
System.out.format("Display Name: %s\n", trainingPipelineResponse.getDisplayName());
System.out.format(
"Training Task Definition %s\n", trainingPipelineResponse.getTrainingTaskDefinition());
System.out.format(
"Training Task Inputs: %s\n", trainingPipelineResponse.getTrainingTaskInputs());
System.out.format(
"Training Task Metadata: %s\n", trainingPipelineResponse.getTrainingTaskMetadata());
System.out.format("State: %s\n", trainingPipelineResponse.getState());
System.out.format("Create Time: %s\n", trainingPipelineResponse.getCreateTime());
System.out.format("StartTime %s\n", trainingPipelineResponse.getStartTime());
System.out.format("End Time: %s\n", trainingPipelineResponse.getEndTime());
System.out.format("Update Time: %s\n", trainingPipelineResponse.getUpdateTime());
System.out.format("Labels: %s\n", trainingPipelineResponse.getLabelsMap());
InputDataConfig inputDataConfig = trainingPipelineResponse.getInputDataConfig();
System.out.println("Input Data Config");
System.out.format("Dataset Id: %s", inputDataConfig.getDatasetId());
System.out.format("Annotations Filter: %s\n", inputDataConfig.getAnnotationsFilter());
FractionSplit fractionSplit = inputDataConfig.getFractionSplit();
System.out.println("Fraction Split");
System.out.format("Training Fraction: %s\n", fractionSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", fractionSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", fractionSplit.getTestFraction());
FilterSplit filterSplit = inputDataConfig.getFilterSplit();
System.out.println("Filter Split");
System.out.format("Training Filter: %s\n", filterSplit.getTrainingFilter());
System.out.format("Validation Filter: %s\n", filterSplit.getValidationFilter());
System.out.format("Test Filter: %s\n", filterSplit.getTestFilter());
PredefinedSplit predefinedSplit = inputDataConfig.getPredefinedSplit();
System.out.println("Predefined Split");
System.out.format("Key: %s\n", predefinedSplit.getKey());
TimestampSplit timestampSplit = inputDataConfig.getTimestampSplit();
System.out.println("Timestamp Split");
System.out.format("Training Fraction: %s\n", timestampSplit.getTrainingFraction());
System.out.format("Validation Fraction: %s\n", timestampSplit.getValidationFraction());
System.out.format("Test Fraction: %s\n", timestampSplit.getTestFraction());
System.out.format("Key: %s\n", timestampSplit.getKey());
Model modelResponse = trainingPipelineResponse.getModelToUpload();
System.out.println("Model To Upload");
System.out.format("Name: %s\n", modelResponse.getName());
System.out.format("Display Name: %s\n", modelResponse.getDisplayName());
System.out.format("Description: %s\n", modelResponse.getDescription());
System.out.format("Metadata Schema Uri: %s\n", modelResponse.getMetadataSchemaUri());
System.out.format("Metadata: %s\n", modelResponse.getMetadata());
System.out.format("Training Pipeline: %s\n", modelResponse.getTrainingPipeline());
System.out.format("Artifact Uri: %s\n", modelResponse.getArtifactUri());
System.out.format(
"Supported Deployment Resources Types: %s\n",
modelResponse.getSupportedDeploymentResourcesTypesList());
System.out.format(
"Supported Input Storage Formats: %s\n",
modelResponse.getSupportedInputStorageFormatsList());
System.out.format(
"Supported Output Storage Formats: %s\n",
modelResponse.getSupportedOutputStorageFormatsList());
System.out.format("Create Time: %s\n", modelResponse.getCreateTime());
System.out.format("Update Time: %s\n", modelResponse.getUpdateTime());
System.out.format("Labels: %sn\n", modelResponse.getLabelsMap());
PredictSchemata predictSchemata = modelResponse.getPredictSchemata();
System.out.println("Predict Schemata");
System.out.format("Instance Schema Uri: %s\n", predictSchemata.getInstanceSchemaUri());
System.out.format("Parameters Schema Uri: %s\n", predictSchemata.getParametersSchemaUri());
System.out.format("Prediction Schema Uri: %s\n", predictSchemata.getPredictionSchemaUri());
for (ExportFormat exportFormat : modelResponse.getSupportedExportFormatsList()) {
System.out.println("Supported Export Format");
System.out.format("Id: %s\n", exportFormat.getId());
}
ModelContainerSpec modelContainerSpec = modelResponse.getContainerSpec();
System.out.println("Container Spec");
System.out.format("Image Uri: %s\n", modelContainerSpec.getImageUri());
System.out.format("Command: %s\n", modelContainerSpec.getCommandList());
System.out.format("Args: %s\n", modelContainerSpec.getArgsList());
System.out.format("Predict Route: %s\n", modelContainerSpec.getPredictRoute());
System.out.format("Health Route: %s\n", modelContainerSpec.getHealthRoute());
for (EnvVar envVar : modelContainerSpec.getEnvList()) {
System.out.println("Env");
System.out.format("Name: %s\n", envVar.getName());
System.out.format("Value: %s\n", envVar.getValue());
}
for (Port port : modelContainerSpec.getPortsList()) {
System.out.println("Port");
System.out.format("Container Port: %s\n", port.getContainerPort());
}
for (DeployedModelRef deployedModelRef : modelResponse.getDeployedModelsList()) {
System.out.println("Deployed Model");
System.out.format("Endpoint: %s\n", deployedModelRef.getEndpoint());
System.out.format("Deployed Model Id: %s\n", deployedModelRef.getDeployedModelId());
}
Status status = trainingPipelineResponse.getError();
System.out.println("Error");
System.out.format("Code: %s\n", status.getCode());
System.out.format("Message: %s\n", status.getMessage());
}
}
}
Python
Before trying this sample, follow the Python setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Python API reference documentation.
To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_training_pipeline_sample(
project: str,
display_name: str,
training_task_definition: str,
dataset_id: str,
model_display_name: str,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
training_task_inputs_dict = {
"multiLabel": True,
"modelType": "CLOUD",
"budgetMilliNodeHours": 8000,
"disableEarlyStopping": False,
}
training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())
training_pipeline = {
"display_name": display_name,
"training_task_definition": training_task_definition,
"training_task_inputs": training_task_inputs,
"input_data_config": {"dataset_id": dataset_id},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
What's next
To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.