Create prompts to chat about code (Generative AI)

Create prompts to work with a publisher code chat model to have a chatbot conversation about code.

Code sample

C#

Before trying this sample, follow the C# setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI C# API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


using Google.Cloud.AIPlatform.V1;
using System;
using System.Collections.Generic;
using System.Linq;
using Value = Google.Protobuf.WellKnownTypes.Value;

public class PredictCodeChatSample
{
    public string PredictCodeChat(
        string projectId = "your-project-id",
        string locationId = "us-central1",
        string publisher = "google",
        string model = "codechat-bison@001"
    )
    {
        // Initialize client that will be used to send requests.
        // This client only needs to be created once,
        // and can be reused for multiple requests.
        var client = new PredictionServiceClientBuilder
        {
            Endpoint = $"{locationId}-aiplatform.googleapis.com"
        }.Build();

        // Configure the parent resource.
        var endpoint = EndpointName.FromProjectLocationPublisherModel(projectId, locationId, publisher, model);

        var instance = new Value
        {
            StructValue = new()
            {
                Fields =
                {
                    ["messages"] = Value.ForList(
                        Value.ForStruct(new()
                        {
                            Fields =
                            {
                                ["author"] = Value.ForString("user"),
                                ["content"] = Value.ForString("Hi, how are you?"),
                            }
                        }),
                        Value.ForStruct(new()
                        {
                            Fields =
                            {
                                ["author"] = Value.ForString("system"),
                                ["content"] = Value.ForString("I am doing good. What can I help you in the coding world?"),
                            }
                        }),
                        Value.ForStruct(new()
                        {
                            Fields =
                            {
                                ["author"] = Value.ForString("user"),
                                ["content"] = Value.ForString("Please help write a C# function to calculate the min of two numbers."),
                            }
                        }))
                }
            }
        };

        var instances = new List<Value>
        {
            instance
        };

        var parameters = Value.ForStruct(new()
        {
            Fields =
            {
                { "temperature", new Value { NumberValue = 0.3 } },
                { "maxOutputTokens", new Value { NumberValue = 1024 } }
            }
        });

        // Make the request.
        var response = client.Predict(endpoint, instances, parameters);

        // Parse and return the content.
        var content = response.Predictions.First().StructValue.Fields["candidates"].ListValue.Values[0].StructValue.Fields["content"].StringValue;
        Console.WriteLine($"Content: {content}");
        return content;
    }
}

Java

Before trying this sample, follow the Java setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Java API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.InvalidProtocolBufferException;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class PredictCodeChatSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace this variable before running the sample.
    String project = "YOUR_PROJECT_ID";

    // Learn more about creating prompts to work with a code chat model at:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-chat-prompts
    String instance =
        "{ \"messages\": [\n"
            + "{\n"
            + "  \"author\": \"user\",\n"
            + "  \"content\": \"Hi, how are you?\"\n"
            + "},\n"
            + "{\n"
            + "  \"author\": \"system\",\n"
            + "  \"content\": \"I am doing good. What can I help you in the coding world?\"\n"
            + " },\n"
            + "{\n"
            + "  \"author\": \"user\",\n"
            + "  \"content\":\n"
            + "     \"Please help write a function to calculate the min of two numbers.\"\n"
            + "}\n"
            + "]}";
    String parameters = "{\n" + "  \"temperature\": 0.5,\n" + "  \"maxOutputTokens\": 1024\n" + "}";
    String location = "us-central1";
    String publisher = "google";
    String model = "codechat-bison@001";

    predictCodeChat(instance, parameters, project, location, publisher, model);
  }

  // Use a code chat model to generate a code function
  public static void predictCodeChat(
      String instance,
      String parameters,
      String project,
      String location,
      String publisher,
      String model)
      throws IOException {
    final String endpoint = String.format("%s-aiplatform.googleapis.com:443", location);
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value instanceValue = stringToValue(instance);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue);

      Value parameterValue = stringToValue(parameters);

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
      System.out.println(predictResponse);
    }
  }

  // Convert a Json string to a protobuf.Value
  static Value stringToValue(String value) throws InvalidProtocolBufferException {
    Value.Builder builder = Value.newBuilder();
    JsonFormat.parser().merge(value, builder);
    return builder.build();
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the Vertex AI quickstart using client libraries. For more information, see the Vertex AI Node.js API reference documentation.

To authenticate to Vertex AI, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.\
 * (Not necessary if passing values as arguments)
 */
// const project = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION';
const aiplatform = require('@google-cloud/aiplatform');

// Imports the Google Cloud Prediction service client
const {PredictionServiceClient} = aiplatform.v1;

// Import the helper module for converting arbitrary protobuf.Value objects.
const {helpers} = aiplatform;

// Specifies the location of the api endpoint
const clientOptions = {
  apiEndpoint: 'us-central1-aiplatform.googleapis.com',
};
const publisher = 'google';
const model = 'codechat-bison@001';

// Instantiates a client
const predictionServiceClient = new PredictionServiceClient(clientOptions);

async function callPredict() {
  // Configure the parent resource
  const endpoint = `projects/${project}/locations/${location}/publishers/${publisher}/models/${model}`;

  // Learn more about creating prompts to work with a code chat model at:
  // https://cloud.google.com/vertex-ai/docs/generative-ai/code/code-chat-prompts
  const prompt = {
    messages: [
      {
        author: 'user',
        content: 'Hi, how are you?',
      },
      {
        author: 'system',
        content: 'I am doing good. What can I help you in the coding world?',
      },
      {
        author: 'user',
        content:
          'Please help write a function to calculate the min of two numbers',
      },
    ],
  };
  const instanceValue = helpers.toValue(prompt);
  const instances = [instanceValue];

  const parameter = {
    temperature: 0.5,
    maxOutputTokens: 1024,
  };
  const parameters = helpers.toValue(parameter);

  const request = {
    endpoint,
    instances,
    parameters,
  };

  // Predict request
  const [response] = await predictionServiceClient.predict(request);
  console.log('Get code chat response');
  const predictions = response.predictions;
  console.log('\tPredictions :');
  for (const prediction of predictions) {
    console.log(`\t\tPrediction : ${JSON.stringify(prediction)}`);
  }
}

callPredict();

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.