Tabellarische Form erläutern
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Ruft eine Erläuterung der tabellarischen Form mit der Methode "explain" ab.
Codebeispiel
Nächste Schritte
Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Schwer verständlich","hardToUnderstand","thumb-down"],["Informationen oder Beispielcode falsch","incorrectInformationOrSampleCode","thumb-down"],["Benötigte Informationen/Beispiele nicht gefunden","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[],null,["# Explain for tabular\n\nGets explanation for tabular using the explain method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from typing import Dict\n\n from google.cloud import aiplatform_v1beta1\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def explain_tabular_sample(\n project: str,\n endpoint_id: str,\n instance_dict: Dict,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform_v1beta1.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html(client_options=client_options)\n # The format of each instance should conform to the deployed model's prediction input schema.\n instance = json_format.ParseDict(instance_dict, Value())\n instances = [instance]\n # tabular models do not have additional parameters\n parameters_dict = {}\n parameters = json_format.ParseDict(parameters_dict, Value())\n endpoint = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_endpoint_path(\n project=project, location=location, endpoint=endpoint_id\n )\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1beta1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1beta1_services_prediction_service_PredictionServiceClient_explain(\n endpoint=endpoint, instances=instances, parameters=parameters\n )\n print(\"response\")\n print(\" deployed_model_id:\", response.deployed_model_id)\n explanations = response.explanations\n for explanation in explanations:\n print(\" explanation\")\n # Feature attributions.\n attributions = explanation.attributions\n for attribution in attributions:\n print(\" attribution\")\n print(\" baseline_output_value:\", attribution.baseline_output_value)\n print(\" instance_output_value:\", attribution.instance_output_value)\n print(\" output_display_name:\", attribution.output_display_name)\n print(\" approximation_error:\", attribution.approximation_error)\n print(\" output_name:\", attribution.output_name)\n output_index = attribution.output_index\n for output_index in output_index:\n print(\" output_index:\", output_index)\n predictions = response.predictions\n for prediction in predictions:\n print(\" prediction:\", dict(prediction))\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]