이 가이드에서는 Mesh CA 또는 Citadel을 사용하여 두 개의 클러스터를 단일 Anthos Service Mesh로 조인하고 클러스터 간 부하 분산을 사용 설정하는 방법을 설명합니다. 이 프로세스를 손쉽게 확장하여 여러 개의 클러스터를 메시에 조인할 수 있습니다.
멀티 클러스터 Anthos Service Mesh 구성은 확장, 위치, 격리와 같은 중요한 기업 문제를 해결할 수 있습니다. 자세한 내용은 멀티 클러스터 사용 사례를 참조하세요. 또한 서비스 메시의 이점을 최대한 활용하려면 애플리케이션을 최적화해야 합니다. 자세한 내용은 Anthos Service Mesh용 애플리케이션 준비를 참조하세요.
기본 요건
이 가이드에서는 다음 요구사항을 충족하는 Google Cloud GKE 클러스터가 2개 이상 있다고 가정합니다.
- 클러스터에 설치된 Anthos Service Mesh 버전 1.6.8 이상
- 클러스터가 동일한 프로젝트에 있으면 설치 개요를 참조하여 클러스터를 필수 버전으로 설치하거나 업그레이드합니다.
- 클러스터가 서로 다른 프로젝트에 있는 경우 다중 프로젝트 설치 및 마이그레이션을 참조하여 클러스터를 필수 버전으로 설치하거나 업그레이드합니다.
- 동일한 프로젝트에 없는 클러스터를 조인하는 경우 해당 클러스터는
asm-gcp-multiproject
프로필을 사용해 설치되고 동일한 네트워크의 공유 VPC 구성에 있어야 합니다. 또한 공유 VPC를 호스트하는 프로젝트 1개와 클러스터를 생성하는 서비스 프로젝트 2개를 사용하는 것이 좋습니다. 자세한 내용은 공유 VPC를 사용하여 클러스터 설정을 참조하세요. - Citadel CA를 사용하는 경우 두 클러스터에 동일한 커스텀 루트 CA를 사용하세요.
- Anthos Service Mesh가 비공개 클러스터에 빌드된 경우 동일한 VPC에 단일 서브넷을 생성하는 것이 좋습니다. 그렇지 않으면 다음을 확인합니다.
- 제어 영역은 클러스터 비공개 IP를 통해 원격 비공개 클러스터 제어 영역에 연결할 수 있습니다.
- 호출 제어 영역의 IP 범위를 원격 비공개 클러스터의 승인된 네트워크에 추가할 수 있습니다. 자세한 내용은 비공개 클러스터 간 엔드포인트 디스커버리 구성을 참조하세요.
프로젝트 및 클러스터 변수 설정
편의를 위해 작업 폴더를 설정합니다. 이 폴더는 기본 요건 단계인 Anthos Service Mesh 설치 준비 단계에서 Anthos Service Mesh 파일을 다운로드하여 추출한 폴더입니다.
export PROJECT_DIR=YOUR_WORKING_FOLDER
각 클러스터의 컨텍스트 변수를 만듭니다. 컨텍스트는 클러스터 프로젝트 ID, 클러스터 이름, 위치를 사용하여 구성된 문자열입니다. 위치 값에는 클러스터의 위치(예:
us-west2-a
)를 사용하세요. 이 예시에서는 이미 클러스터 1개가 포함된 메시에 다른 클러스터를 추가해 보겠습니다.export CTX_1=gke_CLUSTER_1_PROJECT_ID_CLUSTER_1_LOCATION_CLUSTER_1_NAME export CTX_2=gke_CLUSTER_2_PROJECT_ID_CLUSTER_2_LOCATION_CLUSTER_2_NAME
클러스터 간 엔드포인트 검색 구성
다음 명령어를 사용하여 클러스터 간 부하 분산의 엔드포인트 검색을 구성합니다. 이 단계에서는 다음 태스크를 수행합니다.
istioctl
명령어는 클러스터의 Kube API 서버에 대한 액세스 권한을 부여하는 보안 비밀을 만듭니다.kubectl
명령어는 보안 비밀을 또 다른 클러스터에 적용하여 두 번째 클러스터에서 첫 번째 클러스터의 서비스 엔드포인트를 읽을 수 있도록 합니다.
istioctl x create-remote-secret --context=${CTX_1} --name=${CLUSTER_1_NAME} | \ kubectl apply -f - --context=${CTX_2}
istioctl x create-remote-secret --context=${CTX_2} --name=${CLUSTER_2_NAME} | \ kubectl apply -f - --context=${CTX_1}
배포 확인
이 섹션에서는 샘플 HelloWorld
서비스를 멀티 클러스터 환경에 배포하여 클러스터 간 부하 분산이 작동하는지 확인하는 방법을 설명합니다.
사이드카 삽입 사용 설정
다음 명령어를 사용하여
istiod
서비스에서 이후 단계에 사용할 버전 라벨 값을 찾습니다.kubectl -n istio-system get pods -l app=istiod --show-labels
출력은 다음과 유사합니다.
NAME READY STATUS RESTARTS AGE LABELS istiod-asm-173-3-5788d57586-bljj4 1/1 Running 0 23h app=istiod,istio.io/rev=asm-173-3,istio=istiod,pod-template-hash=5788d57586 istiod-asm-173-3-5788d57586-vsklm 1/1 Running 1 23h app=istiod,istio.io/rev=asm-173-3,istio=istiod,pod-template-hash=5788d57586
출력의
LABELS
열 아래에서istio.io/rev=
프리픽스 다음에 있는istiod
버전 라벨의 값을 확인합니다. 이 예시에서 값은asm-173-3
입니다. 다음 섹션의 단계에서 버전 값을 사용하세요.
HelloWorld 서비스 설치
각 클러스터에서 샘플 네임스페이스와 서비스 정의를 만듭니다.
각 클러스터에 샘플 네임스페이스를 만듭니다.
kubectl create --context=${CTX_1} namespace sample
kubectl create --context=${CTX_2} namespace sample
버전 라벨을 덮어씁니다.
kubectl label --context=${CTX_1} namespace sample \ istio-injection- istio.io/rev=REVISION --overwrite
kubectl label --context=${CTX_2} namespace sample \ istio-injection- istio.io/rev=REVISION --overwrite
여기서 REVISION은 이전에 기록한
istiod
버전 라벨입니다.출력은 다음과 같습니다.
label "istio-injection" not found. namespace/sample labeled
label "istio-injection" not found.
를 안전하게 무시할 수 있습니다.두 클러스터에서 HelloWorld 서비스를 만듭니다.
kubectl create --context=${CTX_1} \ -f ${PROJECT_DIR}/samples/helloworld/helloworld.yaml \ -l service=helloworld -n sample
kubectl create --context=${CTX_2} \ -f ${PROJECT_DIR}/samples/helloworld/helloworld.yaml \ -l service=helloworld -n sample
HelloWorld v1 및 v2를 각 클러스터에 배포
나중에 클러스터 간 부하 분산을 확인하는 데 도움이 되도록
HelloWorld v1
을CLUSTER_1
에,v2
를CLUSTER_2
에 배포합니다.kubectl create --context=${CTX_1} \ -f ${PROJECT_DIR}/samples/helloworld/helloworld.yaml \ -l version=v1 -n sample
kubectl create --context=${CTX_2} \ -f ${PROJECT_DIR}/samples/helloworld/helloworld.yaml \ -l version=v2 -n sample
다음 명령어를 사용하여
HelloWorld v1
및v2
가 실행 중인지 확인합니다. 출력이 다음과 비슷한지 확인합니다.kubectl get pod --context=${CTX_1} -n sample
NAME READY STATUS RESTARTS AGE helloworld-v1-86f77cd7bd-cpxhv 2/2 Running 0 40s
kubectl get pod --context=${CTX_2} -n sample
NAME READY STATUS RESTARTS AGE helloworld-v2-758dd55874-6x4t8 2/2 Running 0 40s
Sleep 서비스 배포
두 클러스터에
Sleep
서비스를 배포합니다. 이 포드는 데모용으로 인위적인 네트워크 트래픽을 생성합니다.for CTX in ${CTX_1} ${CTX_2} do kubectl apply --context=${CTX} \ -f ${PROJECT_DIR}/samples/sleep/sleep.yaml -n sample done
각 클러스터에서
Sleep
서비스가 시작될 때까지 기다립니다. 출력이 다음과 비슷한지 확인합니다.kubectl get pod --context=${CTX_1} -n sample -l app=sleep
NAME READY STATUS RESTARTS AGE sleep-754684654f-n6bzf 2/2 Running 0 5s
kubectl get pod --context=${CTX_2} -n sample -l app=sleep
NAME READY STATUS RESTARTS AGE sleep-754684654f-dzl9j 2/2 Running 0 5s
클러스터 간 부하 분산 확인
HelloWorld
서비스를 여러 번 호출하고 출력을 확인하여 v1과 v2에서 번갈아 응답을 보내는지 확인합니다.
HelloWorld
서비스를 호출합니다.kubectl exec --context="${CTX_1}" -n sample -c sleep \ "$(kubectl get pod --context="${CTX_1}" -n sample -l \ app=sleep -o jsonpath='{.items[0].metadata.name}')" \ -- curl -sS helloworld.sample:5000/hello
출력은 다음과 비슷합니다.
Hello version: v2, instance: helloworld-v2-758dd55874-6x4t8 Hello version: v1, instance: helloworld-v1-86f77cd7bd-cpxhv ...
HelloWorld
서비스를 다시 호출합니다.kubectl exec --context="${CTX_2}" -n sample -c sleep \ "$(kubectl get pod --context="${CTX_2}" -n sample -l \ app=sleep -o jsonpath='{.items[0].metadata.name}')" \ -- curl -sS helloworld.sample:5000/hello
출력은 다음과 비슷합니다.
Hello version: v2, instance: helloworld-v2-758dd55874-6x4t8 Hello version: v1, instance: helloworld-v1-86f77cd7bd-cpxhv ...
수고하셨습니다. 멀티 클러스터 Anthos Service Mesh의 부하 분산이 성공적으로 완료되었습니다.
HelloWorld 서비스 삭제
부하 분산이 확인되면 클러스터에서 HelloWorld
및 Sleep
모드를 삭제합니다.
kubectl delete ns sample --context ${CTX_1} kubectl delete ns sample --context ${CTX_2}