Create an Apache Iceberg table with metadata in BigQuery Metastore

This document shows you how to create an Apache Iceberg table with metadata in BigQuery Metastore using the Dataproc Jobs service, the Spark SQL CLI or the Zeppelin web interface running on a Dataproc cluster.

Before you begin

If you haven't done so, create a Google Cloud project, a Cloud Storage bucket, and a Dataproc cluster.

  1. Set up your project

    1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
    2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    3. Make sure that billing is enabled for your Google Cloud project.

    4. Enable the Dataproc, BigQuery, and Cloud Storage APIs.

      Enable the APIs

    5. Install the Google Cloud CLI.
    6. To initialize the gcloud CLI, run the following command:

      gcloud init
    7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

      Go to project selector

    8. Make sure that billing is enabled for your Google Cloud project.

    9. Enable the Dataproc, BigQuery, and Cloud Storage APIs.

      Enable the APIs

    10. Install the Google Cloud CLI.
    11. To initialize the gcloud CLI, run the following command:

      gcloud init

  2. Create a Cloud Storage bucket in your project.

    1. In the Google Cloud console, go to the Cloud Storage Buckets page.

      Go to Buckets page

    2. Click Create bucket.
    3. On the Create a bucket page, enter your bucket information. To go to the next step, click Continue.
      • For Name your bucket, enter a name that meets the bucket naming requirements.
      • For Choose where to store your data, do the following:
        • Select a Location type option.
        • Select a Location option.
      • For Choose a default storage class for your data, select a storage class.
      • For Choose how to control access to objects, select an Access control option.
      • For Advanced settings (optional), specify an encryption method, a retention policy, or bucket labels.
    4. Click Create.

  3. Create a Dataproc cluster. To save resources and costs, you can create a single-node Dataproc cluster to run the examples presented in this document.

    • The subnet in the region where the cluster is created must have Private Google Access (PGA) enabled.

      .

    • If you want to run the Zeppelin web interface example in this guide, you must use or create a Dataproc cluster with the Zeppelin optional component enabled.

  4. Grant roles to a custom service account (if needed): By default, Dataproc cluster VMs use the Compute Engine default service account to interact with Dataproc. If you want to specify a custom service account when you create your cluster, it must have the Dataproc Worker role (roles/dataproc.worker) role or a custom role with needed Worker role permissions.

OSS database to BigQuery dataset mapping

Note the following mapping between open source database and BigQuery dataset terms:

OSS database BigQuery dataset
Namespace, Database Dataset
Partitioned or Unpartitioned Table Table
View View

Create an Iceberg table

This section shows you how to create an Iceberg table with metadata in BigQuery Metastore by submitting a Spark SQL code to the Dataproc service, the Spark SQL CLI, and the Zeppelin component web interface, which run on a Dataproc cluster.

Dataproc job

You can submit a job to the Dataproc service by submitting the job to a Dataproc cluster using the Google Cloud console or the Google Cloud CLI, or via a HTTP REST request or programmatic gRPC Dataproc Cloud Client Libraries call to the Dataproc Jobs API.

The examples in this section show you how to submit a Dataproc Spark SQL job to the Dataproc service to create an Iceberg table with metadata in BigQuery using the gcloud CLI, Google Cloud console, or Dataproc REST API.

Prepare job files

Perform the following steps to create a Spark SQL job file. The file contains Spark SQL commands to create and update an Iceberg table.

  1. In a local terminal window or in Cloud Shell, use a text editor, such as the vi or nano, to copy the following commands into an iceberg-table.sql file, then save the file in the current directory.

    USE CATALOG_NAME;
    CREATE NAMESPACE IF NOT EXISTS example_namespace;
    USE example_namespace;
    DROP TABLE IF EXISTS example_table;
    CREATE TABLE example_table (id int, data string) USING ICEBERG LOCATION 'gs://BUCKET/WAREHOUSE_FOLDER';
    INSERT INTO example_table VALUES (1, 'first row');
    ALTER TABLE example_table ADD COLUMNS (newDoubleCol double);
    DESCRIBE TABLE example_table;
    

    Replace the following:

    • CATALOG_NAME: Iceberg catalog name.
    • BUCKET and WAREHOUSE_FOLDER: Cloud Storage bucket and folder used for the Iceberg warehouse.
  2. Use the gsutil tool to copy the local iceberg-table.sql to your bucket in Cloud Storage.

    gsutil cp iceberg-table.sql gs://BUCKET/
    

Next, download and copy the iceberg-spark-runtime-3.5_2.12-1.5.2 JAR file to Cloud Storage.

  1. In a local terminal window or in Cloud Shell, run the following curl command to download the iceberg-spark-runtime-3.5_2.12-1.5.2 JAR file to the current directory.

    curl -o iceberg-spark-runtime-3.5_2.12-1.5.2.jar https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.5.2/iceberg-spark-runtime-3.5_2.12-1.5.2.jar
    
  2. Use the gsutil tool to copy the local iceberg-spark-runtime-3.5_2.12-1.5.2 JAR file from the current directory to your bucket in Cloud Storage.

    gsutil cp iceberg-spark-runtime-3.5_2.12-1.5.2.jar gs://BUCKET/
    

Submit the Spark SQL job

Select a tab to follow the instructions to submit the Spark SQL job to the Dataproc service using the gcloud CLI, Google Cloud console, or Dataproc REST API.

gcloud

  1. Run the following gcloud dataproc jobs submit spark-sql command locally in a local terminal window or in Cloud Shell to submit the Spark SQL job to create the Iceberg table.

    gcloud dataproc jobs submit spark-sql \
        --project=PROJECT_ID \
        --cluster=CLUSTER_NAME \
        --region=REGION \
        --jars="gs://BUCKET/1.5.2/iceberg-spark-runtime-3.5_2.12-1.5.2.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar" \
        --properties="spark.sql.catalog.CATALOG_NAME=org.apache.iceberg.spark.SparkCatalog,spark.sql.catalog.CATALOG_NAME.catalog-impl=org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog,spark.sql.catalog.CATALOG_NAME.gcp_project=PROJECT_ID,spark.sql.catalog.CATALOG_NAME.gcp_location=LOCATION,spark.sql.catalog.CATALOG_NAME.warehouse=gs://BUCKET/WAREHOUSE_FOLDER" \
        -f="gs://BUCKETiceberg-table.sql"
    

    Notes:

    • PROJECT_ID: Your Google Cloud project ID. Project IDs are listed in the Project info section on the Google Cloud console Dashboard.
    • CLUSTER_NAME: The name of your Dataproc cluster.
    • REGION: The Compute Engine region where your cluster is located.
    • CATALOG_NAME: Iceberg catalog name.
    • BUCKET and WAREHOUSE_FOLDER: Cloud Storage bucket and folder used for the Iceberg warehouse.
    • LOCATION: A supported BigQuery location. The default location is "US".
    • --jars: The listed jars are necessary to create table metadata in BigQuery Metastore.
    • --properties: Catalog properties.
    • -f: The iceberg-table.sql job file you copied to your bucket in Cloud Storage.
  2. View the table description in the terminal output when the job finishes.

    Time taken: 2.194 seconds
    id                      int
    data                    string
    newDoubleCol            double
    Time taken: 1.479 seconds, Fetched 3 row(s)
    Job JOB_ID finished successfully.
    
  3. To view table metadata in BigQuery

    1. In the Google Cloud console, go to the BigQuery page.

      Go to BigQuery Studio

    2. View Iceberg table metadata.

Console

Perform the following steps to use the Google Cloud console to submit the Spark SQL job to the Dataproc service to create an Iceberg table with metadata in BigQuery Metastore.

  1. In the Google Cloud console, go to the Dataproc Submit a job.

    Go to Submit a job page, then complete the following fields:

    • Job ID: Accept the suggested ID or insert your own ID.
    • Region: Select the region where your cluster is located.
    • Cluster: Select your cluster.
    • Job type: Select SparkSql.
    • Query source type: Select Query file.
    • Query file: Insert gs://BUCKET/iceberg-table.sql
    • Jar files: Insert the following:
      gs://BUCKET/iceberg-spark-runtime-3.5_2.12-1.5.2.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar
      
    • Properties: Click Add Property five times to create a list of five key value input fields, then copy the following Key and Value pairs to define five properties.
      # Key Value
      1.
      spark.sql.catalog.CATALOG_NAME
      
      org.apache.iceberg.spark.SparkCatalog
      
      2.
      spark.sql.catalog.CATALOG_NAME.catalog-impl
      
      org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog
      
      3.
      spark.sql.catalog.CATALOG_NAME.gcp_project
      
      PROJECT_ID
      
      4.
      spark.sql.catalog.CATALOG_NAME.gcp_location
      
      LOCATION
      
      5.
      spark.sql.catalog.CATALOG_NAME.warehouse
      
      gs://BUCKET/WAREHOUSE_FOLDER
      

    Notes:

    • CATALOG_NAME: Iceberg catalog name.
    • PROJECT_ID: Your Google Cloud project ID. Project IDs are listed in the Project info section on the Google Cloud console Dashboard. region where your cluster is located.
    • LOCATION: A supported BigQuery location. The default location is "US".
    • BUCKET and WAREHOUSE_FOLDER: Cloud Storage bucket and folder used for the Iceberg warehouse.
  2. Click Submit

  3. To monitor job progress and view job output, go to the Dataproc Jobs page in the Google Cloud console, then click the Job ID to open the Job details page.

  4. To view table metadata in BigQuery

    1. In the Google Cloud console, go to the BigQuery page.

      Go to BigQuery Studio

    2. View Iceberg table metadata.

REST

You can use the Dataproc jobs.submit API to submit the Spark SQL job to the Dataproc service to create an Iceberg table with metadata in BigQuery Metastore.

Before using any of the request data, make the following replacements:

  • PROJECT_ID: Your Google Cloud project ID. Project IDs are listed in the Project info section on the Google Cloud console Dashboard.
  • CLUSTER_NAME: The name of your Dataproc cluster.
  • REGION: The Compute Engine region where your cluster is located.
  • CATALOG_NAME: Iceberg catalog name.
  • BUCKET and WAREHOUSE_FOLDER: Cloud Storage bucket and folder used for the Iceberg warehouse.
  • LOCATION: A supported BigQuery location. The default location is "US".
  • jarFileUris: The listed jars are necessary to create table metadata in BigQuery Metastore.
  • properties: Catalog properties.
  • queryFileUri: The iceberg-table.sql job file you copied to your bucket in Cloud Storage.

HTTP method and URL:

POST https://dataproc.googleapis.com/v1/projects/PROJECT_ID/regions/REGION/jobs:submit

Request JSON body:

{
  "projectId": "PROJECT_ID",
  "job": {
    "placement": {
      "clusterName": "CLUSTER_NAME"
    },
    "statusHistory": [],
    "reference": {
      "jobId": "",
      "projectId": "PROJECT_ID"
    },
    "sparkSqlJob": {
      "properties": {
        "spark.sql.catalog."CATALOG_NAME": "org.apache.iceberg.spark.SparkCatalog",
        "spark.sql.catalog."CATALOG_NAME".catalog-impl": "org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog",
        "spark.sql.catalog."CATALOG_NAME".gcp_project": "PROJECT_ID",
        "spark.sql.catalog."CATALOG_NAME".gcp_location": "LOCATION",
        "spark.sql.catalog."CATALOG_NAME".warehouse": "gs://BUCKET/WAREHOUSE_FOLDER"
      },
      "jarFileUris": [
        "gs://BUCKET/iceberg-spark-runtime-3.5_2.12-1.5.2.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar"
      ],
      "scriptVariables": {},
      "queryFileUri": "gs://BUCKET/iceberg-table.sql"
    }
  }
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "reference": {
    "projectId": "PROJECT_ID",
    "jobId": "..."
  },
  "placement": {
    "clusterName": "CLUSTER_NAME",
    "clusterUuid": "..."
  },
  "status": {
    "state": "PENDING",
    "stateStartTime": "..."
  },
  "submittedBy": "USER",
  "sparkSqlJob": {
    "queryFileUri": "gs://BUCKET/iceberg-table.sql",
    "properties": {
      "spark.sql.catalog.USER_catalog": "org.apache.iceberg.spark.SparkCatalog",
      "spark.sql.catalog.USER_catalog.catalog-impl": "org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog",
      "spark.sql.catalog.USER_catalog.gcp_project": "PROJECT_ID",
      "spark.sql.catalog.USER_catalog.gcp_location": "LOCATION",
      "spark.sql.catalog.USER_catalog.warehouse": "gs://BUCKET/WAREHOUSE_FOLDER"
    },
    "jarFileUris": [
      "gs://BUCKET/iceberg-spark-runtime-3.5_2.12-1.5.2.jar",
      "gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar"
    ]
  },
  "driverControlFilesUri": "gs://dataproc-...",
  "driverOutputResourceUri": "gs://dataproc-.../driveroutput",
  "jobUuid": "...",
  "region": "REGION"
}

To monitor job progress and view job output, go to the Dataproc Jobs page in the Google Cloud console, then click the Job ID to open the Job details page.

To view table metadata in BigQuery

  1. In the Google Cloud console, go to the BigQuery page.

    Go to BigQuery Studio

  2. View Iceberg table metadata.

Spark SQL CLI

The following steps show you how to create an Iceberg table with table metadata stored in BigQuery Metastore using the Spark SQL CLI running on the master node of a Dataproc cluster.

  1. Use SSH to connect to the master node of your Dataproc cluster.

  2. In the SSH session terminal, use the vi or nano text editor to copy the following commands into an iceberg-table.sql file.

    SET CATALOG_NAME = `CATALOG_NAME`;
    SET BUCKET = `BUCKET`;
    SET WAREHOUSE_FOLDER = `WAREHOUSE_FOLDER`;
    USE `${CATALOG_NAME}`;
    CREATE NAMESPACE IF NOT EXISTS `${CATALOG_NAME}`.example_namespace;
    DROP TABLE IF EXISTS `${CATALOG_NAME}`.example_namespace.example_table;
    CREATE TABLE `${CATALOG_NAME}`.example_namespace.example_table (id int, data string) USING ICEBERG LOCATION 'gs://${BUCKET}/${WAREHOUSE_FOLDER}';
    INSERT INTO `${CATALOG_NAME}`.example_namespace.example_table VALUES (1, 'first row');
    ALTER TABLE `${CATALOG_NAME}`.example_namespace.example_table ADD COLUMNS (newDoubleCol double);
    DESCRIBE TABLE `${CATALOG_NAME}`.example_namespace.example_table;
    

    Replace the following:

    • CATALOG_NAME: Iceberg catalog name.
    • BUCKET and WAREHOUSE_FOLDER: Cloud Storage bucket and folder used for the Iceberg warehouse.
  3. In the SSH session terminal, run the following spark-sql command to create the iceberg table.

    spark-sql \
    --packages org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.5.2 \
    --jars https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.5.2/iceberg-spark-runtime-3.5_2.12-1.5.2.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar \
    --conf spark.sql.catalog.CATALOG_NAME=org.apache.iceberg.spark.SparkCatalog \
    --conf spark.sql.catalog.CATALOG_NAME.catalog-impl=org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog \
    --conf spark.sql.catalog.CATALOG_NAME.gcp_project=PROJECT_ID \
    --conf spark.sql.catalog.CATALOG_NAME.gcp_location=LOCATION \
    --conf spark.sql.catalog.CATALOG_NAME.warehouse=gs://BUCKET/WAREHOUSE_FOLDER \
    -f iceberg-table.sql 
    

    Replace the following:

    • PROJECT_ID: Your Google Cloud project ID. Project IDs are listed in the Project info section on the Google Cloud console Dashboard.
    • LOCATION: A supported BigQuery location. The default location is "US".
  4. View table metadata in BigQuery

    1. In the Google Cloud console, go to the BigQuery page.

      Go to BigQuery Studio

    2. View Iceberg table metadata.

Zeppelin web interface

The following steps show you how to to create an Iceberg table with table metadata stored in BigQuery Metastore using the Zeppelin web interface running on the master node of a Dataproc cluster .

  1. In the Google Cloud console, go to the Dataproc Clusters page.

    Go to the Dataproc Clusters page

  2. Select your cluster name to open the Cluster details page.

  3. Click the Web Interfaces tab display a list of Component Gateway links to the web interfaces of default and optional components installed on the cluster.

  4. Click the Zeppelin link to open the Zeppelin web interface.

  5. In the Zeppelin web interface, click the anonymous menu, then click Interpreter to open the Interpreters page.

  6. Add two jars to the Zeppelin Spark interpreter, as follows:

    1. Type "Spark" in Search interpreters box to scroll to the Spark interpreter section.
    2. Click edit.
    3. Paste the following in the spark.jars field:

      https://storage-download.googleapis.com/maven-central/maven2/org/apache/iceberg/iceberg-spark-runtime-3.5_2.12/1.5.2/iceberg-spark-runtime-3.5_2.12-1.5.2.jar,gs://spark-lib/bigquery/iceberg-bigquery-catalog-1.5.2-1.0.0-beta.jar

    4. Click Save at the bottom of the Spark interpreter section, then click OK to update the interpreter and restart the Spark interpreter with the new settings.

  7. From the Zeppelin notebook menu, click Create new note.

  8. In the Create new note dialog, input a name for the notebook, and accept the default spark interpreter. Click Create to open The notebook.

  9. Copy the following PySpark code into your Zeppelin notebook after filling in the variables.

    %pyspark
    from pyspark.sql import SparkSession
    project_id = "PROJECT_ID" catalog = "CATALOG_NAME" namespace = "NAMESPACE" location = "LOCATION" warehouse_dir = "gs://BUCKET/WAREHOUSE_DIRECTORY"
    spark = SparkSession.builder \ .appName("BigQuery Metastore Iceberg") \ .config(f"spark.sql.catalog.{catalog}", "org.apache.iceberg.spark.SparkCatalog") \ .config(f"spark.sql.catalog.{catalog}.catalog-impl", "org.apache.iceberg.gcp.bigquery.BigQueryMetastoreCatalog") \ .config(f"spark.sql.catalog.{catalog}.gcp_project", f"{project_id}") \ .config(f"spark.sql.catalog.{catalog}.gcp_location", f"{location}") \ .config(f"spark.sql.catalog.{catalog}.warehouse", f"{warehouse_dir}") \ .getOrCreate()
    spark.sql(f"USE `{catalog}`;") spark.sql(f"CREATE NAMESPACE IF NOT EXISTS `{namespace}`;") spark.sql(f"USE `{namespace}`;")
    \# Create table and display schema (without LOCATION) spark.sql("DROP TABLE IF EXISTS example_iceberg_table") spark.sql("CREATE TABLE example_iceberg_table (id int, data string) USING ICEBERG") spark.sql("DESCRIBE example_iceberg_table;")
    \# Insert table data. spark.sql("INSERT INTO example_iceberg_table VALUES (1, 'first row');")
    \# Alter table, then display schema. spark.sql("ALTER TABLE example_iceberg_table ADD COLUMNS (newDoubleCol double);")
    \# Select and display the contents of the table. spark.sql("SELECT * FROM example_iceberg_table").show()

    Replace the following:

    • PROJECT_ID: Your Google Cloud project ID. Project IDs are listed in the Project info section on the Google Cloud console Dashboard.
    • CATALOG_NAME and NAMESPACE: The Iceberg catalog name and namespace combine to identify the Iceberg table (catalog.namespace.table_name).
    • LOCATION: A supported BigQuery location. The default location is "US".
    • BUCKET and WAREHOUSE_DIRECTORY: Cloud Storage bucket and folder used as Iceberg warehouse directory.
  10. Click the run icon or press Shift-Enter to run the code. When the job completes, the status message shows "Spark Job Finished", and the output displays the table contents:

  11. View table metadata in BigQuery

    1. In the Google Cloud console, go to the BigQuery page.

      Go to BigQuery Studio

    2. View Iceberg table metadata.