Diffuser des modèles ouverts Gemma à l'aide de GPU sur GKE avec Triton et TensorRT-LLM


Ce tutoriel explique comment diffuser un grand modèle de langage (LLM) Gemma à l'aide de processeurs graphiques (GPU) sur Google Kubernetes Engine (GKE) avec la pile de diffusion Triton et TensorRT-LLM NVIDIA. Dans ce tutoriel, vous allez télécharger les modèles Gemma adaptés aux instruction de paramètres 2B et 7B, et les déployer sur un cluster GKE Autopilot ou Standard à l'aide d'un conteneur exécutant Triton et TensorRT-LLM.

Ce guide est un bon point de départ si vous avez besoin du contrôle précis, de l'évolutivité, de la résilience, de la portabilité et de la rentabilité des services Kubernetes gérés lors du déploiement et de la diffusion de vos charges de travail d'IA/de ML. Si vous avez besoin d'une plate-forme d'IA gérée unifiée pour créer et diffuser rapidement des modèles de ML à moindre coût, nous vous recommandons d'essayer notre solution de déploiement Vertex AI.

Expérience

En diffusant Gemma à l'aide de GPU sur GKE avec Triton et TensorRT-LLM, vous pouvez mettre en œuvre une solution de diffusion d'inférences robuste et prête pour la production avec tous les avantages de Kubernetes géré, y compris une évolutivité efficace et une meilleure disponibilité. Cette section décrit les principales technologies utilisées dans ce guide.

Gemma

Gemma est un ensemble de modèles d'intelligence artificielle (IA) générative, légers et disponibles publiquement, publiés sous licence ouverte. Ces modèles d'IA sont disponibles pour s'exécuter dans vos applications, votre matériel, vos appareils mobiles ou vos services hébergés. Vous pouvez utiliser les modèles Gemma pour la génération de texte, mais vous pouvez également les ajuster pour des tâches spécialisées.

Pour en savoir plus, consultez la documentation Gemma.

GPU

Les GPU vous permettent d'accélérer des charges de travail spécifiques exécutées sur vos nœuds, telles que le machine learning et le traitement de données. GKE fournit toute une gamme d'options de types de machines pour la configuration des nœuds, y compris les types de machines avec des GPU NVIDIA H100, L4 et A100.

Avant d'utiliser des GPU dans GKE, nous vous recommandons de suivre le parcours de formation suivant :

  1. Découvrez la disponibilité actuelle des versions des GPU.
  2. Apprenez-en plus sur les GPU dans GKE.

TensorRT-LLM

NVIDIA TensorRT-LLM (TRT-LLM) est un kit d'outils doté d'une API Python permettant d'assembler des solutions optimisées afin de définir des LLM et de créer des moteurs TensorRT qui effectuent des inférences de manière efficace sur les GPU NVIDIA. TensorRT-LLM inclut des fonctionnalités telles que:

  • Mise en œuvre optimisée du transformateur avec fusions des couches, mise en cache d'activation, réutilisation du tampon de mémoire et PagedAttention
  • Traitement par lot en vol ou continu pour améliorer le débit global de diffusion
  • Parallélisme Tensor et parallélisme des pipelines pour une diffusion distribuée sur plusieurs GPU
  • Quantification (FP16, FP8, INT8)

Pour en savoir plus, consultez la documentation de TensorRT-LLM.

Triton

NVIDIA Triton Inference Server est un serveur d'inférence Open Source pour les applications d'IA et de ML. Triton accepte une inférence hautes performances sur les GPU NVIDIA et les processeurs avec des backends optimisés, y compris TensorRT et TensorRT-LLM. Triton inclut des fonctionnalités telles que:

  • Inférence multi-GPU et multinœud
  • Exécution simultanée de plusieurs modèles
  • Assemblage ou chaînage du modèle
  • Traitement par lot statique, dynamique et continu ou en vol des requêtes de prédiction

Pour en savoir plus, consultez la documentation de Triton.

Objectifs

Ce guide est destiné aux clients d'IA générative qui utilisent PyTorch, aux utilisateurs nouveaux ou existants de GKE, aux ingénieurs en ML, aux ingénieurs MLOps (DevOps) ou aux administrateurs de plate-forme qui s'intéressent à l'utilisation des fonctionnalités d'orchestration de conteneurs Kubernetes pour diffuser des LLM sur du matériel GPU H100, A100 et L4.

À la fin de ce guide, vous devriez être capable d'effectuer les étapes suivantes:

  1. Préparez votre environnement avec un cluster GKE en mode Autopilot.
  2. Déployer un conteneur avec Triton et TritonRT-LLM sur votre cluster.
  3. Utiliser Triton et TensorRT-LLM pour diffuser le modèle Gemma 2B ou 7B via curl.

Avant de commencer

  • Connectez-vous à votre compte Google Cloud. Si vous débutez sur Google Cloud, créez un compte pour évaluer les performances de nos produits en conditions réelles. Les nouveaux clients bénéficient également de 300 $ de crédits gratuits pour exécuter, tester et déployer des charges de travail.
  • Dans Google Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Google Cloud.

    Accéder au sélecteur de projet

  • Vérifiez que la facturation est activée pour votre projet Google Cloud.

  • Activez l'API requise.

    Activer l'API

  • Dans Google Cloud Console, sur la page de sélection du projet, sélectionnez ou créez un projet Google Cloud.

    Accéder au sélecteur de projet

  • Vérifiez que la facturation est activée pour votre projet Google Cloud.

  • Activez l'API requise.

    Activer l'API

  • Assurez-vous que vous disposez du ou des rôles suivants au niveau du projet : roles/container.admin, roles/iam.serviceAccountAdmin

    Vérifier les rôles

    1. Dans la console Google Cloud, accédez à la page IAM.

      Accéder à IAM
    2. Sélectionnez le projet.
    3. Dans la colonne Compte principal, recherchez la ligne qui contient votre adresse e-mail.

      Si votre adresse e-mail ne figure pas dans cette colonne, cela signifie que vous n'avez aucun rôle.

    4. Dans la colonne Rôle de la ligne contenant votre adresse e-mail, vérifiez si la liste des rôles inclut les rôles requis.

    Attribuer les rôles

    1. Dans la console Google Cloud, accédez à la page IAM.

      Accéder à IAM
    2. Sélectionnez le projet.
    3. Cliquez sur Accorder l'accès.
    4. Dans le champ Nouveaux comptes principaux, saisissez votre adresse e-mail.
    5. Dans la liste Sélectinoner un rôle, sélectionnez un rôle.
    6. Pour attribuer des rôles supplémentaires, cliquez sur Ajouter un autre rôle et ajoutez chaque rôle supplémentaire.
    7. Cliquez sur Enregistrer.
  • Créez un compte Kaggle, si vous n'en possédez pas.
  • Assurez-vous que votre projet dispose d'un quota suffisant pour les GPU. Pour en savoir plus, consultez les pages À propos des GPU et Quotas d'allocation.

Préparer votre environnement

Dans ce tutoriel, vous utilisez Cloud Shell pour gérer les ressources hébergées sur Google Cloud. Cloud Shell est préinstallé avec les logiciels dont vous avez besoin pour ce tutoriel, y compris kubectl et gcloud CLI.

Pour configurer votre environnement avec Cloud Shell, procédez comme suit :

  1. Dans la console Google Cloud, lancez une session Cloud Shell en cliquant sur Icône d'activation Cloud Shell Activer Cloud Shell dans la console Google Cloud. Une session s'ouvre dans le volet inférieur de la console Google Cloud.

  2. Définissez les variables d'environnement par défaut :

    gcloud config set project PROJECT_ID
    export PROJECT_ID=$(gcloud config get project)
    export REGION=REGION
    export CLUSTER_NAME=triton
    

    Remplacez les valeurs suivantes :

    • PROJECT_ID : L'ID de votre projet Google Cloud.
    • REGION: région compatible avec le type d'accélérateur que vous souhaitez utiliser, par exemple us-central1 pour les GPU L4.

Accéder au modèle

Pour accéder aux modèles Gemma, vous devez vous connecter à la plate-forme Kaggle et obtenir un jeton d'API Kaggle.

Vous devez signer le contrat de consentement pour utiliser Gemma. Procédez comme suit :

  1. Accédez à la page d'autorisation du modèle sur Kaggle.com.
  2. Connectez-vous à Kaggle si vous ne l'avez pas déjà fait.
  3. Cliquez sur Demande d'accès.
  4. Dans la section Choose Account for Consent (Choisir un compte pour le consentement), sélectionnez Verify via Kaggle Account (Vérifier via un compte Kaggle) pour utiliser votre compte Kaggle pour le consentement.
  5. Acceptez les Conditions d'utilisation du modèle.

Générer un jeton d'accès

Pour accéder au modèle via Kaggle, vous avez besoin d'un jeton d'API Kaggle. Pour générer un nouveau jeton si vous n'en possédez pas, procédez comme suit:

  1. Dans votre navigateur, accédez aux paramètres Kaggle.
  2. Dans la section "API", cliquez sur Créer un jeton.

Un fichier nommé kaggle.json est téléchargé.

Importer le jeton d'accès dans Cloud Shell

Dans Cloud Shell, importez le jeton d'API Kaggle dans votre projet Google Cloud:

  1. Dans Cloud Shell, cliquez sur Plus > Importer.
  2. Sélectionnez "Fichier", puis cliquez sur Sélectionner des fichiers.
  3. Ouvrez le fichier kaggle.json.
  4. Cliquez sur Importer.

Créer et configurer des ressources Google Cloud

Suivez les instructions ci-dessous pour créer les ressources requises.

Créer un cluster GKE et un pool de nœuds

Vous pouvez diffuser les modèles Gemma sur des GPU dans un cluster GKE Autopilot ou GKE Standard. Nous vous recommandons d'utiliser un cluster GKE Autopilot pour une expérience Kubernetes entièrement gérée. Pour choisir le mode de fonctionnement GKE le mieux adapté à vos charges de travail, consultez la section Choisir un mode de fonctionnement GKE.

Autopilot

Dans Cloud Shell, exécutez la commande suivante :

gcloud container clusters create-auto ${CLUSTER_NAME} \
  --project=${PROJECT_ID} \
  --region=${REGION} \
  --release-channel=rapid \
  --cluster-version=1.28

GKE crée un cluster Autopilot avec des nœuds de processeur et de GPU, à la demande des charges de travail déployées.

Standard

  1. Dans Cloud Shell, exécutez la commande suivante pour créer un cluster GKE Standard :

    gcloud container clusters create ${CLUSTER_NAME} \
        --project=${PROJECT_ID} \
        --location=${REGION}-a \
        --workload-pool=${PROJECT_ID}.svc.id.goog \
        --release-channel=rapid \
        --machine-type=e2-standard-4 \
        --num-nodes=1
    

    La création du cluster peut prendre plusieurs minutes.

  2. Exécutez la commande suivante pour créer un pool de nœuds pour votre cluster :

    gcloud container node-pools create gpupool \
        --accelerator type=nvidia-l4,count=1,gpu-driver-version=latest \
        --project=${PROJECT_ID} \
        --location=${REGION}-a \
        --cluster=${CLUSTER_NAME} \
        --machine-type=g2-standard-12 \
        --num-nodes=1
    

    GKE crée un pool de nœuds unique contenant un nœud GPU L4.

Créer un secret Kubernetes pour les identifiants Kaggle

Dans ce tutoriel, vous utilisez un secret Kubernetes pour les identifiants Kaggle.

Dans Cloud Shell, procédez comme suit :

  1. Configurez kubectl de manière à communiquer avec votre cluster :

    gcloud container clusters get-credentials ${CLUSTER_NAME} --location=${REGION}
    
  2. Créez un secret pour stocker les identifiants Kaggle:

    kubectl create secret generic kaggle-secret \
        --from-file=kaggle.json \
        --dry-run=client -o yaml | kubectl apply -f -
    

Créer une ressource PersistentVolume pour stocker des points de contrôle

Dans cette section, vous allez créer un objet PersistentVolume sauvegardé par un disque persistant pour stocker les points de contrôle du modèle.

  1. Créez le fichier manifeste trtllm_checkpoint_pv.yaml suivant :

    apiVersion: v1
    kind: PersistentVolumeClaim
    metadata:
      name: model-data
    spec:
      accessModes:
      - ReadWriteOnce
      resources:
        requests:
          storage: 100G
  2. Appliquez le fichier manifeste :

    kubectl apply -f trtllm_checkpoint_pv.yaml
    

Télécharger les fichiers du moteur TensorRT-LLM pour Gemma

Dans cette section, vous allez exécuter une tâche pour télécharger les fichiers du moteur TensorRT-LLM et les stocker dans le volume persistant que vous avez créé précédemment. La tâche prépare également les fichiers de configuration pour le déploiement du modèle sur le serveur Triton à l'étape suivante. Ce processus peut prendre quelques minutes.

Gemma 2B-it

Le moteur TensorRT-LLM est créé à partir du point de contrôle PyTorch de Gemma du modèle Gemma 2B-it (adapté aux instructions) à l'aide de l'activation bfloat16, de GPU L4 ciblés d'une longueur de séquence d'entrée égale à 2 048 et d'une longueur de séquence de sortie égale à 1 024. Vous pouvez déployer le modèle sur un seul GPU L4.

  1. Créez le fichier manifeste job-download-gemma-2b.yaml suivant :

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: fetch-model-scripts
    data:
      fetch_model.sh: |-
        #!/usr/bin/bash -x
        pip install kaggle --break-system-packages && \
    
        MODEL_NAME=$(echo ${MODEL_PATH} | awk -F'/' '{print $2}') && \
        VARIATION_NAME=$(echo ${MODEL_PATH} | awk -F'/' '{print $4}') && \
        ACTIVATION_DTYPE=bfloat16 && \
    
        TOKENIZER_DIR=/data/trt_engine/${MODEL_NAME}/${VARIATION_NAME}/${ACTIVATION_DTYPE}/${WORLD_SIZE}-gpu/tokenizer.model && \
        ENGINE_PATH=/data/trt_engine/${MODEL_NAME}/${VARIATION_NAME}/${ACTIVATION_DTYPE}/${WORLD_SIZE}-gpu/ && \
        TRITON_MODEL_REPO=/data/triton/model_repository && \
    
        mkdir -p /data/${MODEL_NAME}_${VARIATION_NAME} && \
        mkdir -p ${ENGINE_PATH} && \
        mkdir -p ${TRITON_MODEL_REPO} && \
    
        kaggle models instances versions download ${MODEL_PATH} --untar -p /data/${MODEL_NAME}_${VARIATION_NAME} && \
        rm -f /data/${MODEL_NAME}_${VARIATION_NAME}/*.tar.gz && \
        find /data/${MODEL_NAME}_${VARIATION_NAME} -type f && \
        find /data/${MODEL_NAME}_${VARIATION_NAME} -type f | xargs -I '{}' mv '{}' ${ENGINE_PATH} && \
    
        # copying configuration files
        echo -e "\nCreating configuration files" && \
        cp -r /tensorrtllm_backend/all_models/inflight_batcher_llm/* ${TRITON_MODEL_REPO} && \
    
        # updating configuration files
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/preprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},tokenizer_type:sp,triton_max_batch_size:64,preprocessing_instance_count:1 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/postprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},tokenizer_type:sp,triton_max_batch_size:64,postprocessing_instance_count:1 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:64,decoupled_mode:False,bls_instance_count:1,accumulate_tokens:False && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/ensemble/config.pbtxt triton_max_batch_size:64 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/tensorrt_llm/config.pbtxt triton_max_batch_size:64,decoupled_mode:False,max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_batching,max_queue_delay_microseconds:600,batch_scheduler_policy:guaranteed_no_evict,enable_trt_overlap:False && \
    
        echo -e "\nCompleted extraction to ${ENGINE_PATH}"
    ---
    apiVersion: batch/v1
    kind: Job
    metadata:
      name: data-loader-gemma-2b
      labels:
        app: data-loader-gemma-2b
    spec:
      ttlSecondsAfterFinished: 120
      template:
        metadata:
          labels:
            app: data-loader-gemma-2b
        spec:
          restartPolicy: OnFailure
          containers:
          - name: gcloud
            image: us-docker.pkg.dev/google-samples/containers/gke/tritonserver:2.42.0
            command:
            - /scripts/fetch_model.sh
            env:
            - name: KAGGLE_CONFIG_DIR
              value: /kaggle
            - name: MODEL_PATH
              value: "google/gemma/tensorrtllm/2b-it/2"
            - name: WORLD_SIZE
              value: "1"
            volumeMounts:
            - mountPath: "/kaggle/"
              name: kaggle-credentials
              readOnly: true
            - mountPath: "/scripts/"
              name: scripts-volume
              readOnly: true
            - mountPath: "/data"
              name: data
          volumes:
          - name: kaggle-credentials
            secret:
              defaultMode: 0400
              secretName: kaggle-secret
          - name: scripts-volume
            configMap:
              defaultMode: 0700
              name: fetch-model-scripts
          - name: data
            persistentVolumeClaim:
              claimName: model-data
          tolerations:
          - key: "key"
            operator: "Exists"
            effect: "NoSchedule"
  2. Appliquez le fichier manifeste :

    kubectl apply -f job-download-gemma-2b.yaml
    
  3. Affichez les journaux de la tâche:

    kubectl logs -f job/data-loader-gemma-2b
    

    La sortie des journaux est semblable à celle-ci:

    ...
    Creating configuration files
    + echo -e '\n02-16-2024 04:07:45 Completed building TensortRT-LLM engine at /data/trt_engine/gemma/2b/bfloat16/1-gpu/'
    + echo -e '\nCreating configuration files'
    ...
    
  4. Attendez que la tâche soit terminée :

    kubectl wait --for=condition=complete --timeout=900s job/data-loader-gemma-2b
    

    Le résultat ressemble à ce qui suit :

    job.batch/data-loader-gemma-2b condition met
    
  5. Vérifiez que la tâche a bien été exécutée (cela peut prendre quelques minutes):

    kubectl get job/data-loader-gemma-2b
    

    Le résultat ressemble à ce qui suit :

    NAME             COMPLETIONS   DURATION   AGE
    data-loader-gemma-2b   1/1           ##s        #m##s
    

Gemma 7B-it

Le moteur TensorRT-LLM est créé à partir du point de contrôle PyTorch de Gemma du modèle Gemma 7B-it (adapté aux instructions) à l'aide de l'activation bfloat16, de GPU L4 ciblés d'une longueur de séquence d'entrée égale à 1 024 et d'une longueur de séquence de sortie égale à 512. Vous pouvez déployer le modèle sur un seul GPU L4.

  1. Créez le fichier manifeste job-download-gemma-7b.yaml suivant :

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: fetch-model-scripts
    data:
      fetch_model.sh: |-
        #!/usr/bin/bash -x
        pip install kaggle --break-system-packages && \
    
        MODEL_NAME=$(echo ${MODEL_PATH} | awk -F'/' '{print $2}') && \
        VARIATION_NAME=$(echo ${MODEL_PATH} | awk -F'/' '{print $4}') && \
        ACTIVATION_DTYPE=bfloat16 && \
    
        TOKENIZER_DIR=/data/trt_engine/${MODEL_NAME}/${VARIATION_NAME}/${ACTIVATION_DTYPE}/${WORLD_SIZE}-gpu/tokenizer.model && \
        ENGINE_PATH=/data/trt_engine/${MODEL_NAME}/${VARIATION_NAME}/${ACTIVATION_DTYPE}/${WORLD_SIZE}-gpu/ && \
        TRITON_MODEL_REPO=/data/triton/model_repository && \
    
        mkdir -p ${ENGINE_PATH} && \
        mkdir -p ${TRITON_MODEL_REPO} && \
    
        kaggle models instances versions download ${MODEL_PATH} --untar -p /data/${MODEL_NAME}_${VARIATION_NAME} && \
        rm -f /data/${MODEL_NAME}_${VARIATION_NAME}/*.tar.gz && \
        find /data/${MODEL_NAME}_${VARIATION_NAME} -type f && \
        find /data/${MODEL_NAME}_${VARIATION_NAME} -type f | xargs -I '{}' mv '{}' ${ENGINE_PATH} && \
    
        # copying configuration files
        echo -e "\nCreating configuration files" && \
        cp -r /tensorrtllm_backend/all_models/inflight_batcher_llm/* ${TRITON_MODEL_REPO} && \
    
        # updating configuration files
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/preprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},tokenizer_type:sp,triton_max_batch_size:64,preprocessing_instance_count:1 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/postprocessing/config.pbtxt tokenizer_dir:${TOKENIZER_DIR},tokenizer_type:sp,triton_max_batch_size:64,postprocessing_instance_count:1 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/tensorrt_llm_bls/config.pbtxt triton_max_batch_size:64,decoupled_mode:False,bls_instance_count:1,accumulate_tokens:False && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/ensemble/config.pbtxt triton_max_batch_size:64 && \
        python3 /tensorrtllm_backend/tools/fill_template.py -i ${TRITON_MODEL_REPO}/tensorrt_llm/config.pbtxt triton_max_batch_size:64,decoupled_mode:False,max_beam_width:1,engine_dir:${ENGINE_PATH},max_tokens_in_paged_kv_cache:2560,max_attention_window_size:2560,kv_cache_free_gpu_mem_fraction:0.5,exclude_input_in_output:True,enable_kv_cache_reuse:False,batching_strategy:inflight_batching,max_queue_delay_microseconds:600,batch_scheduler_policy:guaranteed_no_evict,enable_trt_overlap:False && \
    
        echo -e "\nCompleted extraction to ${ENGINE_PATH}"
    ---
    apiVersion: batch/v1
    kind: Job
    metadata:
      name: data-loader-gemma-7b
      labels:
        app: data-loader-gemma-7b
    spec:
      ttlSecondsAfterFinished: 120
      template:
        metadata:
          labels:
            app: data-loader-gemma-7b
        spec:
          restartPolicy: OnFailure
          containers:
          - name: gcloud
            image: us-docker.pkg.dev/google-samples/containers/gke/tritonserver:2.42.0
            command:
            - /scripts/fetch_model.sh
            env:
            - name: KAGGLE_CONFIG_DIR
              value: /kaggle
            - name: MODEL_PATH
              value: "google/gemma/tensorrtllm/7b-it/2"
            - name: WORLD_SIZE
              value: "1"
            volumeMounts:
            - mountPath: "/kaggle/"
              name: kaggle-credentials
              readOnly: true
            - mountPath: "/scripts/"
              name: scripts-volume
              readOnly: true
            - mountPath: "/data"
              name: data
          volumes:
          - name: kaggle-credentials
            secret:
              defaultMode: 0400
              secretName: kaggle-secret
          - name: scripts-volume
            configMap:
              defaultMode: 0700
              name: fetch-model-scripts
          - name: data
            persistentVolumeClaim:
              claimName: model-data
          tolerations:
          - key: "key"
            operator: "Exists"
            effect: "NoSchedule"
  2. Appliquez le fichier manifeste :

    kubectl apply -f job-download-gemma-7b.yaml
    
  3. Affichez les journaux de la tâche:

    kubectl logs -f job/data-loader-gemma-7b
    

    La sortie des journaux est semblable à celle-ci:

    ...
    Creating configuration files
    + echo -e '\n02-16-2024 04:07:45 Completed building TensortRT-LLM engine at /data/trt_engine/gemma/7b/bfloat16/1-gpu/'
    + echo -e '\nCreating configuration files'
    ...
    
  4. Attendez que la tâche soit terminée :

    kubectl wait --for=condition=complete --timeout=900s job/data-loader-gemma-7b
    

    Le résultat ressemble à ce qui suit :

    job.batch/data-loader-gemma-7b condition met
    
  5. Vérifiez que la tâche a bien été exécutée (cela peut prendre quelques minutes):

    kubectl get job/data-loader-gemma-7b
    

    Le résultat ressemble à ce qui suit :

    NAME             COMPLETIONS   DURATION   AGE
    data-loader-gemma-7b   1/1           ##s        #m##s
    

Assurez-vous que la tâche a bien été exécutée avant de passer à la section suivante.

Déployer Triton

Dans cette section, vous allez déployer un conteneur utilisant Triton avec le backend TensorRT-LLM pour diffuser le modèle Gemma que vous souhaitez utiliser.

  1. Créez le fichier manifeste deploy-triton-server.yaml suivant :

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: launch-tritonserver
    data:
      entrypoint.sh: |-
        #!/usr/bin/bash -x
        # Launch Triton Inference server
    
        WORLD_SIZE=1
        TRITON_MODEL_REPO=/data/triton/model_repository
    
        python3 /tensorrtllm_backend/scripts/launch_triton_server.py \
          --world_size ${WORLD_SIZE} \
          --model_repo ${TRITON_MODEL_REPO}
    
        tail -f /dev/null
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: triton-gemma-deployment
      labels:
        app: gemma-server
        version: v1
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: gemma-server
          version: v1
      template:
        metadata:
          labels:
            app: gemma-server
            ai.gke.io/model: gemma
            ai.gke.io/inference-server: triton
            examples.ai.gke.io/source: user-guide
            version: v1
        spec:
          containers:
          - name: inference-server
            image: us-docker.pkg.dev/google-samples/containers/gke/tritonserver:2.42.0
            imagePullPolicy: IfNotPresent
            resources:
              requests:
                ephemeral-storage: "40Gi"
                memory: "40Gi"
                nvidia.com/gpu: 1
              limits:
                ephemeral-storage: "40Gi"
                memory: "40Gi"
                nvidia.com/gpu: 1
            command:
            - /scripts/entrypoint.sh
            volumeMounts:
            - mountPath: "/scripts/"
              name: scripts-volume
              readOnly: true
            - mountPath: "/data"
              name: data
            ports:
              - containerPort: 8000
                name: http
              - containerPort: 8001
                name: grpc
              - containerPort: 8002
                name: metrics
            livenessProbe:
              failureThreshold: 60
              initialDelaySeconds: 600
              periodSeconds: 5
              httpGet:
                path: /v2/health/live
                port: http
            readinessProbe:
              failureThreshold: 60
              initialDelaySeconds: 600
              periodSeconds: 5
              httpGet:
                path: /v2/health/ready
                port: http
          securityContext:
            runAsUser: 1000
            fsGroup: 1000
          volumes:
          - name: scripts-volume
            configMap:
              defaultMode: 0700
              name: launch-tritonserver
          - name: data
            persistentVolumeClaim:
              claimName: model-data
          nodeSelector:
            cloud.google.com/gke-accelerator: nvidia-l4
          tolerations:
          - key: "key"
            operator: "Exists"
            effect: "NoSchedule"
    ---
    apiVersion: v1
    kind: Service
    metadata:
      name: triton-server
      labels:
        app: gemma-server
    spec:
      type: ClusterIP
      ports:
        - port: 8000
          targetPort: http
          name: http-inference-server
        - port: 8001
          targetPort: grpc
          name: grpc-inference-server
        - port: 8002
          targetPort: metrics
          name: http-metrics
      selector:
        app: gemma-server
  2. Appliquez le fichier manifeste :

    kubectl apply -f deploy-triton-server.yaml
    
  3. Attendez que le déploiement soit disponible :

    kubectl wait --for=condition=Available --timeout=900s deployment/triton-gemma-deployment
    
  4. Affichez les journaux à partir du fichier manifeste:

    kubectl logs -f -l app=gemma-server
    

    La ressource de déploiement lance le serveur Triton et charge les données du modèle. Ce processus peut prendre quelques minutes (jusqu'à 20 minutes, plus). Le résultat ressemble à ce qui suit :

    I0216 03:24:57.387420 29 server.cc:676]
    +------------------+---------+--------+
    | Model            | Version | Status |
    +------------------+---------+--------+
    | ensemble         | 1       | READY  |
    | postprocessing   | 1       | READY  |
    | preprocessing    | 1       | READY  |
    | tensorrt_llm     | 1       | READY  |
    | tensorrt_llm_bls | 1       | READY  |
    +------------------+---------+--------+
    
    ....
    ....
    ....
    
    I0216 03:24:57.425104 29 grpc_server.cc:2519] Started GRPCInferenceService at 0.0.0.0:8001
    I0216 03:24:57.425418 29 http_server.cc:4623] Started HTTPService at 0.0.0.0:8000
    I0216 03:24:57.466646 29 http_server.cc:315] Started Metrics Service at 0.0.0.0:8002
    

Diffuser le modèle

Dans cette section, vous allez interagir avec le modèle.

Configurer le transfert de port

Exécutez la commande suivante pour configurer le transfert de port sur le modèle:

kubectl port-forward service/triton-server 8000:8000

Le résultat ressemble à ce qui suit :

Forwarding from 127.0.0.1:8000 -> 8000
Forwarding from [::1]:8000 -> 8000
Handling connection for 8000

Interagir avec le modèle à l'aide de curl

Cette section explique comment effectuer un test de fumée de base pour vérifier le modèle adapté aux instructions déployé. Par souci de simplicité, cette section décrit l'approche de test uniquement avec le modèle adapté aux instructions 2B.

Dans une nouvelle session de terminal, utilisez curl pour discuter avec votre modèle:

USER_PROMPT="I'm new to coding. If you could only recommend one programming language to start with, what would it be and why?"

curl -X POST localhost:8000/v2/models/ensemble/generate \
  -H "Content-Type: application/json" \
  -d @- <<EOF
{
    "text_input": "<start_of_turn>user\n${USER_PROMPT}<end_of_turn>\n",
    "temperature": 0.9,
    "max_tokens": 128
}
EOF

Le résultat suivant affiche un exemple de réponse du modèle :

{
  "context_logits": 0,
  "cum_log_probs": 0,
  "generation_logits": 0,
  "model_name": "ensemble",
  "model_version": "1",
  "output_log_probs": [0.0,0.0,...],
  "sequence_end": false,
  "sequence_id": 0,
  "sequence_start": false,
  "text_output":"Python.\n\nPython is an excellent choice for beginners due to its simplicity, readability, and extensive documentation. Its syntax is close to natural language, making it easier for beginners to understand and write code. Python also has a vast collection of libraries and tools that make it versatile for various projects. Additionally, Python's dynamic nature allows for easier learning and experimentation, making it a perfect choice for newcomers to get started.Here are some specific reasons why Python is a good choice for beginners:\n\n- Simple and Easy to Read: Python's syntax is designed to be close to natural language, making it easier for"
}

Résoudre les problèmes

Effectuer un nettoyage

Pour éviter que les ressources utilisées lors de ce tutoriel soient facturées sur votre compte Google Cloud, supprimez le projet contenant les ressources, ou conservez le projet et supprimez les ressources individuelles.

Supprimer les ressources déployées

Pour éviter que les ressources que vous avez créées dans ce guide soient facturées sur votre compte Google Cloud, exécutez la commande suivante:

gcloud container clusters delete ${CLUSTER_NAME} \
  --region=${REGION}

Étapes suivantes