Questo tutorial descrive come eseguire la migrazione di un'applicazione creata per i nodi utilizzando processore x86 (Intel o AMD) in un cluster Google Kubernetes Engine (GKE) a un un'applicazione multiarchitettura (multi-arch) eseguita su nodi x86 o Arm. Il pubblico di destinazione di questo tutorial è costituito da amministratori della piattaforma, operatori di app e sviluppatori di app che vogliono eseguire i loro carichi di lavoro compatibili con x86 esistenti su Arm.
Con i cluster GKE, puoi eseguire carichi di lavoro sui nodi ARM utilizzando Serie di macchine Tau T2A ARM. I nodi T2A possono essere eseguiti nel cluster GKE come qualsiasi altro nodo utilizzando processori x86 (Intel o AMD). Sono una buona scelta per lo scale out e lo scale out, ad alta intensità di calcolo.
Per scoprire di più, consulta Arma dei carichi di lavoro su GKE.
Questo tutorial presuppone che tu abbia familiarità con Kubernetes e Docker. La usa Google Kubernetes Engine e Artifact Registry.
Obiettivi
In questo tutorial, completerai le seguenti attività:
- Archiviare immagini container con Docker in Artifact Registry.
- Esegui il deployment di un carico di lavoro compatibile con x86 in un cluster GKE.
- Ricostruisci un carico di lavoro compatibile con x86 da eseguire su Arm.
- Aggiungi un pool di nodi Arm a un cluster esistente.
- Esegui il deployment di un carico di lavoro compatibile con Arm da eseguire su un nodo Arm.
- Crea un'immagine multi-arch per eseguire un carico di lavoro su più architetture.
- Esegui carichi di lavoro su più architetture in un unico cluster GKE.
Costi
In questo documento utilizzi i seguenti componenti fatturabili di Google Cloud:
Per generare una stima dei costi basata sull'utilizzo previsto,
utilizza il Calcolatore prezzi.
Una volta completate le attività descritte in questo documento, puoi evitare la fatturazione continua eliminando le risorse che hai creato. Per ulteriori informazioni, consulta la pagina Pulizia.
Prima di iniziare
Per abilitare l'API Kubernetes Engine, segui questi passaggi:- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Artifact Registry and Google Kubernetes Engine APIs.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
-
Make sure that billing is enabled for your Google Cloud project.
-
Enable the Artifact Registry and Google Kubernetes Engine APIs.
Al termine di questo tutorial, puoi evitare la fatturazione continua eliminando le risorse che hai creato. Consulta Pulizia per ulteriori dettagli.
Avvia Cloud Shell
In questo tutorial utilizzerai Cloud Shell, che è un ambiente shell per la gestione delle risorse ospitate su Google Cloud.
Cloud Shell è preinstallato
Google Cloud CLI
e kubectl
a strumento a riga di comando. gcloud CLI fornisce la riga di comando
per Google Cloud e kubectl
fornisce la riga di comando
per eseguire comandi sui cluster Kubernetes.
Avvia Cloud Shell:
Vai alla console Google Cloud.
Nell'angolo in alto a destra della console, fai clic sul pulsante Attiva Cloud Shell:
Nella console viene visualizzata una sessione di Cloud Shell.
Utilizza questa shell per eseguire i comandi gcloud
e kubectl
.
prepara l'ambiente
In questa sezione prepari l'ambiente per seguire il tutorial.
Configura le impostazioni predefinite per gcloud CLI
Imposta le variabili di ambiente per l'ID progetto, la zona e il nome nel nuovo cluster.
export PROJECT_ID=PROJECT_ID
export ZONE=us-central1-a
export CLUSTER_NAME=my-cluster
Sostituisci PROJECT_ID
con l'ID progetto che hai scelto
questo tutorial nella sezione Prima di iniziare.
In questo tutorial creerai risorse in us-central1-a. Per visualizzare un elenco completo per sapere dove è disponibile la serie di macchine Tau T2A, consulta Regioni e zone disponibili.
Clona il repository Git
Clona il repository:
git clone https://github.com/GoogleCloudPlatform/kubernetes-engine-samples
Cambia la directory di lavoro attuale impostandola sul repository clonato nel passaggio precedente:
cd kubernetes-engine-samples/workloads/migrate-x86-app-to-multi-arch/
Crea un cluster GKE ed esegui il deployment dell'applicazione x86
Nella prima parte di questo tutorial, crei un cluster con nodi x86 ed esegui il deployment di un'applicazione x86. L'applicazione di esempio è un servizio che risponde alle richieste HTTP. È realizzato con il linguaggio di programmazione Golang.
Questa configurazione mostra un ambiente cluster tipico, che utilizza applicazioni compatibili con x86 e nodi x86.
Crea un cluster GKE
Per prima cosa, crea un GKE utilizzando nodi con processori x86. Con questa configurazione, crei un ambiente cluster tipico per eseguire applicazioni x86.
Crea il cluster:
gcloud container clusters create $CLUSTER_NAME \
--release-channel=rapid \
--zone=$ZONE \
--machine-type=e2-standard-2 \
--num-nodes=1 \
--async
La scalabilità automatica è disabilitata in questo cluster per dimostrare la funzionalità nei passaggi successivi.
Il processo di creazione del cluster potrebbe richiedere alcuni minuti. --async
consente di eseguire l'operazione in background mentre
passaggi.
Puoi creare cluster con solo nodi Arm, Tuttavia, per questo tutorial creerai prima un cluster con solo nodi x86 scopri il processo per rendere compatibili con ARM le applicazioni solo x86.
Crea il repository Docker di Artifact Registry
Crea un repository in Artifact Registry per archiviare le immagini Docker:
gcloud artifacts repositories create docker-repo \ --repository-format=docker \ --location=us-central1 \ --description="Docker repository"
Configura lo strumento a riga di comando Docker per eseguire l'autenticazione in questo repository in Artifact Registry:
gcloud auth configure-docker us-central1-docker.pkg.dev
Crea l'immagine x86 ed eseguine il push in Artifact Registry
Crea la versione dell'applicazione compatibile con x86:
docker build -t us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/x86-hello:v0.0.1 .
Esegui il push dell'immagine in Artifact Registry:
docker push us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/x86-hello:v0.0.1
Esegui il deployment dell'applicazione x86
Verifica che il cluster sia pronto eseguendo questo script:
echo echo -ne "Waiting for GKE cluster to finish provisioning" gke_status="" while [ -z $gke_status ]; do sleep 2 echo -ne '.' gke_status=$(gcloud container clusters list --format="value(STATUS)" --filter="NAME=$CLUSTER_NAME AND STATUS=RUNNING") done echo echo "GKE Cluster '$CLUSTER_NAME' is $gke_status" echo
Quando il cluster è pronto, l'output dovrebbe essere simile al seguente:
GKE Cluster 'my-cluster' is RUNNING
Recupera le credenziali del cluster in modo che
kubectl
possa connettersi API Kubernetes per il cluster:gcloud container clusters get-credentials $CLUSTER_NAME --zone $ZONE --project $PROJECT_ID
Aggiorna l'immagine utilizzando kustomize e esegui il deployment dell'applicazione x86:
$(cd k8s/overlays/x86 && kustomize edit set image hello=us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/x86-hello:v0.0.1) kubectl apply -k k8s/overlays/x86
Esegui il deployment di un servizio per esporre l'applicazione a internet:
kubectl apply -f k8s/hello-service.yaml
Verifica che il provisioning dell'indirizzo IP esterno del servizio
hello-service
sia stato completato:echo echo -ne "Waiting for External IP to be provisioned" external_ip="" while [ -z $external_ip ]; do sleep 2 echo -ne '.' external_ip=$(kubectl get svc hello-service --template="{{range .status.loadBalancer.ingress}}{{.ip}}{{end}}") done echo echo "External IP: $external_ip" echo
Dopo il provisioning dell'indirizzo IP esterno, l'output dovrebbe essere simile al seguente:
External IP: 203.0.113.0
Effettua una richiesta HTTP per verificare che il deployment funzioni come previsto:
curl -w '\n' http://$external_ip
L'output è simile al seguente:
Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-mwfkd, CPU PLATFORM:linux/amd64
L'output mostra che questo deployment compatibile con x86 è in esecuzione su un nodo in pool di nodi predefinito nell'architettura
amd64
. I nodi nel nodo predefinito del tuo cluster hanno processori x86 (Intel o AMD).
Aggiungi nodi Arm al cluster
Nella parte successiva di questo tutorial, aggiungi nodi Arm al cluster esistente. In questi node viene implementata la versione compatibile con Arm dell'applicazione quando viene ricostruita per l'esecuzione su Arm.
Check Point
Finora hai raggiunto i seguenti obiettivi:
- Crea un cluster GKE utilizzando nodi x86.
- archiviare un'immagine container compatibile con x86 con Docker in Artifact Registry.
- il deployment di un carico di lavoro compatibile con x86 in un cluster GKE.
Hai configurato un ambiente cluster con nodi x86 e un server carico di lavoro. Questa configurazione è simile agli ambienti cluster esistenti se al momento non utilizzi nodi Arm e carichi di lavoro compatibili con Arm.
Aggiungere un pool di nodi Arm al cluster
Aggiungi un pool di nodi Arm al cluster esistente:
gcloud container node-pools create arm-pool \
--cluster $CLUSTER_NAME \
--zone $ZONE \
--machine-type=t2a-standard-2 \
--num-nodes=1
Il tipo di macchina t2a-standard-2
è una VM ARM della serie di macchine Tau T2A (anteprima).
Crei un pool di nodi con i nodi Arm come faresti per creare un pool di nodi con nodi x86. Dopo aver creato questo pool di nodi, avrete entrambi i nodi x86 e i nodi ARM in esecuzione in questo cluster.
Per saperne di più sull'aggiunta di pool di nodi Arm ai cluster esistenti, consulta Aggiungere un pool di nodi Arm a un cluster GKE.
Esegui l'upgrade dell'applicazione esistente in esecuzione su nodi basati su x86
I nodi di più tipi di architettura possono lavorare perfettamente insieme in un cluster. GKE non pianifica i carichi di lavoro esistenti in esecuzione sui nodi x86 per i nodi Arm nel cluster perché viene inserito automaticamente un'impronta sui nodi Arm. Puoi verificarlo facendo lo scale up dell'applicazione esistente.
Aggiorna il carico di lavoro, scalandolo fino a 6 repliche:
$(cd k8s/overlays/x86_increase_replicas && kustomize edit set image hello=us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/x86-hello:v0.0.1) kubectl apply -k k8s/overlays/x86_increase_replicas/
Attendi 30 secondi, quindi esegui il comando seguente per controllare lo stato del deployment:
kubectl get pods -l="app=hello" --field-selector="status.phase=Pending"
L'output dovrebbe essere simile al seguente:
NAME READY STATUS RESTARTS AGE x86-hello-deployment-6b7b456dd5-6tkxd 0/1 Pending 0 40s x86-hello-deployment-6b7b456dd5-k95b7 0/1 Pending 0 40s x86-hello-deployment-6b7b456dd5-kc876 0/1 Pending 0 40s
Questo output mostra i pod con stato In attesa perché non c'è più spazio nella basati su x86. Poiché il gestore della scalabilità automatica del cluster è disabilitato e i nodi ARM incompatibile, il deployment dei carichi di lavoro non verrà eseguito su nessuno degli ARM disponibili nodi. Questo taint impedisce a GKE di pianificare i carichi di lavoro x86 su nodi Arm. Per eseguire il deployment sui nodi ARM, devi indicare che il deployment è compatibile con i nodi ARM.
Controlla i pod in stato Running:
kubectl get pods -l="app=hello" --field-selector="status.phase=Running" -o wide
L'output dovrebbe essere simile al seguente:
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES x86-hello-deployment-6b7b456dd5-cjclz 1/1 Running 0 62s 10.100.0.17 gke-my-cluster-default-pool-32019863-b41t <none> <none> x86-hello-deployment-6b7b456dd5-mwfkd 1/1 Running 0 34m 10.100.0.11 gke-my-cluster-default-pool-32019863-b41t <none> <none> x86-hello-deployment-6b7b456dd5-n56rg 1/1 Running 0 62s 10.100.0.16 gke-my-cluster-default-pool-32019863-b41t <none> <none>
In questo output, la colonna
NODE
indica che tutti i pod del deployment vengono eseguiti solo nel pool predefinito, il che significa che i pod compatibili con x86 vengono pianificati solo sui nodi x86. Il pod originale che era già pianificato prima della creazione del pool di nodi Arm è ancora in esecuzione sullo stesso nodo.Esegui questo comando per accedere al servizio e visualizzare l'output:
for i in $(seq 1 6); do curl -w '\n' http://$external_ip; done
L'output è simile al seguente:
Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-cjclz, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-cjclz, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-n56rg, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-n56rg, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-cjclz, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-cjclz, CPU PLATFORM:linux/amd64
Questo output mostra che tutte le richieste di pubblicazione dei pod sono in esecuzione su nodi x86. Alcuni pod non possono rispondere perché sono ancora in stato Pending perché non c'è spazio sui nodi x86 esistenti e non verranno pianificati sui nodi Arm.
Ricrea l'applicazione per eseguirla su ARM
Nella sezione precedente hai aggiunto un pool di nodi Arm al tuo cluster esistente. Tuttavia, quando hai eseguito l'upgrade dell'applicazione x86 esistente, non è stato pianificato alcun carico di lavoro sui nodi Arm. In questa sezione, ricostruisci l'applicazione in modo che sia compatibile con Arm, in modo che possa essere eseguita sui nodi Arm del cluster.
Per questo esempio, esegui questi passaggi utilizzando docker build
.
Questo approccio in due passaggi include:
- Prima fase: crea il codice per ARM.
- Seconda fase: copia l'eseguibile in un contenitore snello.
Dopo aver seguito questi passaggi, avrai un'immagine compatibile con Arm oltre all'immagine compatibile con x86.
Il secondo passaggio di copia dell'eseguibile in un altro contenitore segue una delle best practice per la creazione di un contenitore, ovvero creare l'immagine più piccola possibile.
Questo tutorial utilizza un'applicazione di esempio creata con il linguaggio di programmazione Golang. Con Golang, puoi eseguire la compilazione incrociata di un'applicazione per diversi sistemi operativi e piattaforme CPU specificando le variabili di ambiente GOOS
e GOARCH
.
Esegui
cat Dockerfile_arm
per visualizzare il Dockerfile scritto per Arm:# # Build: 1st stage # FROM golang:1.18-alpine as builder WORKDIR /app COPY go.mod . COPY hello.go . RUN GOARCH=arm64 go build -o /hello && \ apk add --update --no-cache file && \ file /hello
Lo snippet mostrato qui mostra solo la prima fase. Nel file sono incluse entrambe le fasi.
In questo file, l'impostazione di
GOARCH=arm64
indica al compilatore Go di creare per il set di istruzioni ARM. Non è necessario impostareGOOS
perché l'immagine di base nella prima fase è un'immagine Linux Alpine.Compila il codice per Arm ed eseguine il push su Artifact Registry:
docker build -t us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/arm-hello:v0.0.1 -f Dockerfile_arm . docker push us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/arm-hello:v0.0.1
Esegui il deployment della versione ARM dell'applicazione
Ora che l'applicazione è stata creata per essere eseguita su nodi Arm, puoi eseguirne il deployment Arma i nodi nel tuo cluster.
Controlla
add_arm_support.yaml
eseguendocat k8s/overlays/arm/add_arm_support.yaml
:L'output è simile al seguente:
nodeSelector: kubernetes.io/arch: arm64
Questo
nodeSelector
specifica che il carico di lavoro deve essere eseguito solo su ARM nodi. Quando utilizzinodeSelector
, GKE aggiunge una tolleranza che corrisponde al taint sui nodi ARM, consentendo a GKE di pianificare il carico di lavoro su questi nodi. Per scoprire di più su come impostare questo campo, consulta Preparare un carico di lavoro Arm per il deployment.Esegui il deployment di una replica della versione dell'applicazione compatibile con Arm:
$(cd k8s/overlays/arm && kustomize edit set image hello=us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/arm-hello:v0.0.1) kubectl apply -k k8s/overlays/arm
Attendi 5 secondi, quindi verifica che il deployment ARM risponda alle richieste di
curl
:for i in $(seq 1 6); do curl -w '\n' http://$external_ip; done
L'output è simile al seguente:
Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-n56rg, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-n56rg, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-mwfkd, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-mwfkd, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:arm-hello-deployment-69b4b6bdcc-n5l28, CPU PLATFORM:linux/arm64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:x86-hello-deployment-6b7b456dd5-n56rg, CPU PLATFORM:linux/amd64
Questo output deve includere le risposte di entrambe le istanze compatibili con ARM e rispondono alla richiesta
curl
.
Crea un'immagine con più architetture per eseguire un carico di lavoro su più architetture
Puoi usare la strategia descritta nella sezione precedente ed eseguire il deployment carichi di lavoro separati per x86 e Arm. È necessario mantenere e due processi di compilazione e due immagini container.
L'ideale sarebbe creare ed eseguire l'applicazione senza problemi su entrambe le piattaforme x86 e Arm. Ti consigliamo questo approccio. Per eseguire l'applicazione con un unico manifest su più piattaforme di architettura, devi utilizzare immagini multi-architettura (multi-arch). Per saperne di più sull'architettura multi-architettura immagini, consulta Crea immagini multi-arch per i carichi di lavoro ARM.
Per usare immagini con più architetture, devi assicurarti che l'applicazione soddisfi i requisiti i seguenti prerequisiti:
- L'applicazione non ha dipendenze specifiche della piattaforma dell'architettura.
- Tutte le dipendenze devono essere create per più architetture o, almeno, per le piattaforme di destinazione.
L'applicazione di esempio utilizzata in questo tutorial soddisfa entrambi questi prerequisiti. Tuttavia, ti consigliamo di testare le tue applicazioni durante la creazione delle immagini multi-architettura prima di eseguirne il deployment in produzione.
Crea ed esegui il push di immagini multi-architettura
Puoi creare immagini multi-arch con Docker Buildx se il carico di lavoro soddisfa i seguenti prerequisiti:
- L'immagine di base supporta più architetture. Per verificare, esegui
docker manifest inspect
sull'immagine di base e controlla l'elenco delle piattaforme di architettura. Consulta un esempio di come ispezionare un'immagine alla fine di questa sezione. - L'applicazione non richiede passi di build speciali per ogni architettura
completamente gestita. Se sono stati richiesti passaggi speciali, Buildx potrebbe non essere sufficiente. Devi avere un Dockerfile separato per ogni piattaforma e creare il manifest manualmente con
docker manifest create
.
L'immagine di base dell'applicazione di esempio è Alpine, che supporta più architetture. Inoltre, non sono previsti passaggi specifici per ogni piattaforma, puoi creare l'immagine multi-arch con Buildx.
Controlla il Dockerfile eseguendo
cat Dockerfile
:# This is a multi-stage Dockerfile. # 1st stage builds the app in the target platform # 2nd stage create a lean image coping the binary from the 1st stage # # Build: 1st stage # FROM golang:1.18-alpine as builder ARG BUILDPLATFORM ARG TARGETPLATFORM RUN echo "I am running on $BUILDPLATFORM, building for $TARGETPLATFORM" WORKDIR /app COPY go.mod . COPY hello.go . RUN go build -o /hello && \ apk add --update --no-cache file && \ file /hello # # Release: 2nd stage # FROM alpine WORKDIR / COPY --from=builder /hello /hello CMD [ "/hello" ]
Questo Dockerfile definisce due fasi: la fase di build e quella di rilascio. Devi utilizzare lo stesso Dockerfile utilizzato per la compilazione dell'applicazione x86.
Esegui il comando seguente per creare e utilizzare un nuovo compilatore
docker buildx
:docker buildx create --name multiarch --use --bootstrap
Ora che hai creato il nuovo builder, puoi creare un'immagine ed eseguirne il push che sia compatibile con
linux/amd64
elinux/arm64
utilizzando il Flag--platform
. Per ogni piattaforma fornita con il flag, Buildx crea un nella piattaforma di destinazione. Quando Buildx crea l'immaginelinux/arm64
, scarica le immagini di basearm64
. Nella prima fase, crea il file binario l'immaginearm64 golang:1.18-alpine
diarm64
. Nella seconda fase,arm64
L'immagine di Alpine Linux viene scaricata e il file binario viene copiato in un livello dell'immagine.Crea ed esegui il push dell'immagine:
docker buildx build -t us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/multiarch-hello:v0.0.1 -f Dockerfile --platform linux/amd64,linux/arm64 --push .
L'output è simile al seguente:
=> [linux/arm64 builder x/x] .. => [linux/amd64 builder x/x] ..
Questo output mostra che vengono generate due immagini, una per
linux/arm64
e una perlinux/amd64
.Controlla il manifest della tua nuova immagine multi-arch:
docker manifest inspect us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/multiarch-hello:v0.0.1
L'output è simile al seguente:
{ "schemaVersion": 2, "mediaType": "application/vnd.docker.distribution.manifest.list.v2+json", "manifests": [ { "mediaType": "application/vnd.docker.distribution.manifest.v2+json", "size": 739, "digest": "sha256:dfcf8febd94d61809bca8313850a5af9113ad7d4741edec1362099c9b7d423fc", "platform": { "architecture": "amd64", "os": "linux" } }, { "mediaType": "application/vnd.docker.distribution.manifest.v2+json", "size": 739, "digest": "sha256:90b637d85a93c3dc03fc7a97d1fd640013c3f98c7c362d1156560bbd01f6a419", "platform": { "architecture": "arm64", "os": "linux" } } ]
In questo output, la sezione
manifests
include due manifest, uno conamd64
e l'altra con la piattaformaarm64
dell'architettura.Quando esegui il deployment di questa immagine container GKE scarica automaticamente solo l'immagine corrisponde all'architettura del nodo.
Esegui il deployment della versione multi-arch della tua applicazione
Prima di eseguire il deployment dell'immagine multi-architettura, elimina i carichi di lavoro originali:
kubectl delete deploy x86-hello-deployment arm-hello-deployment
Controlla l'overlay kustomize
add_multiarch_support.yaml
eseguendocat k8s/overlays/multiarch/add_multiarch_support.yaml
:L'output include il seguente insieme di tolleranze:
tolerations: - key: kubernetes.io/arch operator: Equal value: arm64 effect: NoSchedule
Questa tolleranza consente l'esecuzione del carico di lavoro sui nodi Arm del cluster, poiché corrisponde al taint impostato su tutti i nodi Arm. Poiché questo carico di lavoro può ora essere eseguita su qualsiasi nodo nel cluster, è necessaria solo la tolleranza. Con solo per la tolleranza, GKE può pianificare il carico di lavoro su e i nodi ARM. Se vuoi specificare dove GKE può pianificare usano i selettori dei nodi e le regole di affinità dei nodi. Per scoprire di più su l'impostazione di questi campi, consulta Preparare un carico di lavoro ARM per il deployment.
Esegui il deployment dell'immagine container multi-arch con 6 repliche:
$(cd k8s/overlays/multiarch && kustomize edit set image hello=us-central1-docker.pkg.dev/$PROJECT_ID/docker-repo/multiarch-hello:v0.0.1) kubectl apply -k k8s/overlays/multiarch
Attendi 10 secondi, poi verifica che tutte le repliche dell'applicazione siano in esecuzione:
kubectl get pods -l="app=hello" -o wide
L'output è simile al seguente:
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES multiarch-hello-deployment-65bfd784d-5xrrr 1/1 Running 0 95s 10.100.1.5 gke-my-cluster-arm-pool-e172cff7-shwc <none> <none> multiarch-hello-deployment-65bfd784d-7h94b 1/1 Running 0 95s 10.100.1.4 gke-my-cluster-arm-pool-e172cff7-shwc <none> <none> multiarch-hello-deployment-65bfd784d-7qbkz 1/1 Running 0 95s 10.100.1.7 gke-my-cluster-arm-pool-e172cff7-shwc <none> <none> multiarch-hello-deployment-65bfd784d-7wqb6 1/1 Running 0 95s 10.100.1.6 gke-my-cluster-arm-pool-e172cff7-shwc <none> <none> multiarch-hello-deployment-65bfd784d-h2g2k 1/1 Running 0 95s 10.100.0.19 gke-my-cluster-default-pool-32019863-b41t <none> <none> multiarch-hello-deployment-65bfd784d-lc9dc 1/1 Running 0 95s 10.100.0.18 gke-my-cluster-default-pool-32019863-b41t <none> <none>
Questo output include una colonna
NODE
che indica che i pod sono in esecuzione sia i nodi nel pool di nodi Arm sia gli altri nel pool di nodi predefinito (x86).Esegui questo comando per accedere al servizio e visualizzare l'output:
for i in $(seq 1 6); do curl -w '\n' http://$external_ip; done
L'output è simile al seguente:
Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:multiarch-hello-deployment-65bfd784d-7qbkz, CPU PLATFORM:linux/arm64 Hello from NODE:gke-my-cluster-default-pool-32019863-b41t, POD:multiarch-hello-deployment-65bfd784d-lc9dc, CPU PLATFORM:linux/amd64 Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:multiarch-hello-deployment-65bfd784d-5xrrr, CPU PLATFORM:linux/arm64 Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:multiarch-hello-deployment-65bfd784d-7wqb6, CPU PLATFORM:linux/arm64 Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:multiarch-hello-deployment-65bfd784d-7h94b, CPU PLATFORM:linux/arm64 Hello from NODE:gke-my-cluster-arm-pool-e172cff7-shwc, POD:multiarch-hello-deployment-65bfd784d-7wqb6, CPU PLATFORM:linux/arm64
Dovresti vedere che i pod in esecuzione sulle piattaforme di architettura rispondono alle richieste.
Hai creato e implementato un'immagine multi-arch per eseguire senza problemi un carico di lavoro su più architetture.
Esegui la pulizia
Per evitare che al tuo account Google Cloud vengano addebitati costi relativi alle risorse utilizzate in questo tutorial, elimina il progetto che contiene le risorse oppure mantieni il progetto ed elimina le singole risorse.
Dopo aver completato il tutorial, puoi eseguire la pulizia delle risorse che hai creato per ridurre l'utilizzo delle quote e interrompere gli addebiti. Le seguenti sezioni descrivono come eliminare o disattivare queste risorse.
Elimina il progetto
Il modo più semplice per eliminare la fatturazione creato per il tutorial.
Per eliminare il progetto:
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
Elimina il servizio, il cluster e il repository
Se non vuoi eliminare l'intero progetto, elimina il cluster e il repository che hai creato per il tutorial:
Elimina il servizio dell'applicazione eseguendo
kubectl delete
:kubectl delete service hello-service
Questo comando elimina il bilanciatore del carico Compute Engine che hai creato quando hai esposto il deployment.
Elimina il cluster eseguendo
gcloud container clusters delete
:gcloud container clusters delete $CLUSTER_NAME --zone $ZONE
Elimina il repository:
gcloud artifacts repositories delete docker-repo —location=us-central1 --async
Passaggi successivi
- Abilita i carichi di lavoro su GKE
- Crea cluster e pool di nodi con i nodi Arm
- Creare immagini multi-architettura per i carichi di lavoro Arm
- Preparare un carico di lavoro ARM per il deployment
- Preparare i carichi di lavoro Autopilot sull'architettura Arm
- Best practice per l'esecuzione di applicazioni Kubernetes con ottimizzazione dei costi su GKE
- Esplora le architetture di riferimento, i diagrammi e le best practice su Google Cloud. Dai un'occhiata al nostro Centro architetture cloud.