Rangkaian tutorial ini ditujukan untuk Operator dan administrator IT yang ingin men-deploy, menjalankan, dan mengelola lingkungan aplikasi modern yang berjalan di Google Kubernetes Engine (GKE). Seiring Anda menyelesaikan rangkaian tutorial ini, Anda akan mempelajari cara mengonfigurasi pemantauan dan pemberitahuan, menskalakan beban kerja, dan menyimulasikan kegagalan, semuanya menggunakan aplikasi contoh microservice Cymbal Bank:
- Membuat cluster dan men-deploy aplikasi contoh
- Memantau dengan Google Cloud Managed Service for Prometheus
- Menskalakan workload (tutorial ini)
- Menyimulasikan kegagalan
Ringkasan dan tujuan
Aplikasi konsumen seperti Cymbal Bank sering kali memiliki jumlah pengguna yang bervariasi pada waktu yang berbeda. Idealnya, situs Anda dapat mengatasi lonjakan traffic tanpa memperlambat atau mengalami masalah lain, tetapi tanpa organisasi harus menghabiskan uang untuk resource Cloud yang sebenarnya tidak mereka butuhkan. Solusi yang disediakan Google Cloud untuk hal ini adalah penskalaan otomatis.
Dalam tutorial ini, Anda akan mempelajari cara mengonfigurasi cluster dan beban kerja di cluster GKE untuk diskalakan menggunakan metrik Kubernetes bawaan dan metrik kustom dari Cloud Monitoring dan Cloud Trace. Anda akan mempelajari cara menyelesaikan tugas-tugas berikut:
- Mengaktifkan metrik kustom di Cloud Monitoring untuk Trace.
- Metrik kustom memungkinkan Anda menskalakan menggunakan data pemantauan tambahan atau input eksternal di luar kesadaran cluster Kubernetes, seperti traffic jaringan atau kode respons HTTP.
- Konfigurasikan Horizontal Pod Autoscaler, fitur GKE yang dapat otomatis meningkatkan atau menurunkan jumlah Pod untuk workload, bergantung pada metrik yang ditentukan.
- Simulasikan beban aplikasi dan lihat respons autoscaler cluster dan Horizontal Pod Autoscaler.
Biaya
Mengaktifkan GKE dan men-deploy aplikasi contoh Cymbal Bank untuk rangkaian tutorial ini berarti Anda akan dikenai biaya per cluster untuk GKE di Google Cloud seperti yang tercantum di halaman Harga kami hingga Anda menonaktifkan GKE atau menghapus project.
Anda juga bertanggung jawab atas biaya Google Cloud lainnya yang timbul saat menjalankan aplikasi contoh Cymbal Bank, seperti tagihan untuk VM Compute Engine dan Trace.
Sebelum memulai
Untuk mempelajari cara menskalakan deployment, Anda harus menyelesaikan tutorial pertama untuk membuat cluster GKE yang menggunakan Autopilot dan men-deploy aplikasi berbasis microservice contoh Cymbal Bank.
Sebaiknya Anda menyelesaikan rangkaian tutorial ini untuk aplikasi yang skalabel secara berurutan. Seiring Anda menyelesaikan serangkaian tutorial, Anda akan mempelajari keterampilan baru dan menggunakan produk dan layanan Google Cloud tambahan.
Anda juga perlu membuat akun layanan IAM dan memberikan beberapa izin agar Horizontal Pod Autoscaler berfungsi dengan benar:
Buat akun layanan IAM. Akun layanan ini digunakan dalam tutorial untuk memberikan akses ke metrik kustom yang memungkinkan Horizontal Pod Autoscaler menentukan kapan harus menskalakan ke atas atau ke bawah:
gcloud iam service-accounts create scalable-apps
Berikan akses ke akun layanan IAM untuk melakukan tindakan penskalaan yang diperlukan:
gcloud projects add-iam-policy-binding PROJECT_ID \ --role roles/cloudtrace.agent \ --member "serviceAccount:scalable-apps@PROJECT_ID." gcloud projects add-iam-policy-binding PROJECT_ID \ --role roles/monitoring.metricWriter \ --member "serviceAccount:scalable-apps@PROJECT_ID." gcloud iam service-accounts add-iam-policy-binding "scalable-apps@PROJECT_ID." \ --role roles/iam.workloadIdentityUser \ --member "serviceAccount:PROJECT_ID.svc.id.goog[default/default]"
Akses berikut diberikan ke akun layanan IAM:
roles/cloudtrace.agent
: Menulis data rekaman aktivitas seperti informasi latensi ke Pelacakan.roles/monitoring.metricWriter
: Menulis metrik ke Cloud Monitoring.roles/iam.workloadIdentityUser
: Mengizinkan akun layanan Kubernetes untuk menggunakan Workload Identity Federation for GKE agar berfungsi sebagai akun layanan IAM.
Konfigurasikan akun layanan Kubernetes
default
di namespacedefault
untuk berfungsi sebagai akun layanan IAM yang Anda buat:kubectl annotate serviceaccount default \ iam.gke.io/gcp-service-account=scalable-apps@PROJECT_ID.
Konfigurasi ini memungkinkan Pod yang menggunakan akun layanan Kubernetes
default
di namespacedefault
untuk mengakses resource Google Cloud yang sama dengan akun layanan IAM.
Menyiapkan pengumpulan metrik kustom
Anda dapat mengonfigurasi Horizontal Pod Autoscaler untuk menggunakan metrik CPU dan memori Kubernetes bawaan dasar, atau Anda dapat menggunakan metrik kustom dari Cloud Monitoring seperti permintaan HTTP per detik atau jumlah pernyataan SELECT
. Metrik kustom dapat berfungsi tanpa perubahan aplikasi, dan memberi cluster Anda lebih banyak insight tentang performa dan kebutuhan aplikasi secara keseluruhan. Dalam tutorial ini, Anda
akan mempelajari cara menggunakan metrik bawaan dan kustom.
Agar Horizontal Pod Autoscaler dapat membaca metrik kustom dari Monitoring, Anda harus menginstal adaptor Custom Metrics - Stackdriver Adapter di cluster Anda.
Deploy adaptor Stackdriver metrik kustom ke cluster Anda:
kubectl apply -f https://raw.githubusercontent.com/GoogleCloudPlatform/k8s-stackdriver/master/custom-metrics-stackdriver-adapter/deploy/production/adapter.yaml
Agar adaptor Stackdriver dapat mendapatkan metrik kustom dari cluster, Anda harus menggunakan Workload Identity Federation untuk GKE. Pendekatan ini menggunakan akun layanan IAM yang memiliki izin untuk membaca metrik pemantauan.
Berikan peran
roles/monitoring.viewer
kepada akun layanan IAM:gcloud projects add-iam-policy-binding PROJECT_ID \ --member "serviceAccount:scalable-apps@PROJECT_ID." \ --role roles/monitoring.viewer
Konfigurasikan adaptor Stackdriver untuk menggunakan Workload Identity Federation untuk GKE dan akun layanan IAM yang memiliki izin untuk membaca metrik pemantauan:
gcloud iam service-accounts add-iam-policy-binding scalable-apps@PROJECT_ID. \ --role roles/iam.workloadIdentityUser \ --member "serviceAccount:PROJECT_ID.svc.id.goog[custom-metrics/custom-metrics-stackdriver-adapter]"
Kubernetes menyertakan sistemnya sendiri untuk akun layanan guna mendapatkan akses dalam cluster. Agar aplikasi Anda dapat melakukan autentikasi ke layanan dan resource di luar cluster Google Kubernetes Engine, seperti Monitoring, Anda menggunakan Federasi Workload Identity untuk GKE. Pendekatan ini mengonfigurasi akun layanan Kubernetes untuk menggunakan akun layanan IAM untuk GKE.
Anotasikan akun layanan Kubernetes yang digunakan adaptor:
kubectl annotate serviceaccount custom-metrics-stackdriver-adapter \ --namespace=custom-metrics \ iam.gke.io/gcp-service-account=scalable-apps@PROJECT_ID.
Mulai ulang Deployment adaptor Stackdriver untuk menerapkan perubahan:
kubectl rollout restart deployment custom-metrics-stackdriver-adapter \ --namespace=custom-metrics
Mengonfigurasi Horizontal Pod Autoscaler
GKE Autopilot dapat diskalakan dengan beberapa cara. Dalam tutorial ini, Anda akan melihat cara cluster Anda dapat diskalakan menggunakan metode berikut:
- Horizontal Pod Autoscaler: menskalakan jumlah Pod untuk beban kerja.
- Autoscaler cluster: menskalakan resource node yang tersedia di cluster.
Kedua metode ini dapat bekerja sama sehingga saat jumlah Pod untuk aplikasi Anda berubah, resource node untuk mendukung Pod tersebut juga berubah.
Implementasi lain tersedia untuk menskalakan Pod yang dibuat di atas Horizontal Pod Autoscaler, dan Anda juga dapat menggunakan Vertical Pod Autoscaler untuk menyesuaikan permintaan CPU dan memori Pod, bukan jumlah Pod.
Dalam tutorial ini, Anda akan mengonfigurasi Horizontal Pod Autoscaler untuk Deployment userservice
menggunakan metrik bawaan, dan untuk Deployment frontend
menggunakan metrik kustom.
Untuk aplikasi Anda sendiri, bekerja samalah dengan developer Aplikasi dan engineer Platform untuk memahami kebutuhan mereka dan mengonfigurasi aturan Penskalaan Otomatis Pod Horizontal.
Menskalakan Deployment userservice
Saat jumlah pengguna aplikasi contoh Cymbal Bank meningkat, Layanan userservice
akan menggunakan lebih banyak resource CPU. Anda menggunakan
objek HorizontalPodAutoscaler
untuk mengontrol cara aplikasi Anda
merespons pemuatan. Dalam manifes YAML untuk HorizontalPodAutoscaler
, Anda
menentukan Deployment yang akan diskalakan oleh Horizontal Pod Autoscaler, metrik
yang akan dipantau, dan jumlah minimum dan maksimum replika yang ingin Anda
jalankan.
Tinjau manifes contoh
HorizontalPodAutoscaler
untuk Deploymentuserservice
:Manifes ini melakukan hal berikut:
- Menetapkan jumlah maksimum replika selama peningkatan skala hingga
50
. - Menetapkan jumlah minimum selama penurunan skala ke
5
. - Menggunakan metrik Kubernetes bawaan untuk membuat keputusan penskalaan. Dalam contoh ini, metriknya adalah pemakaian CPU, dan target pemanfaatannya adalah 60%, yang menghindari penggunaan yang berlebihan atau kurang.
- Menetapkan jumlah maksimum replika selama peningkatan skala hingga
Terapkan manifes ke cluster:
kubectl apply -f extras/postgres-hpa/hpa/userservice.yaml
Menskalakan Deployment frontend
Di bagian sebelumnya, Anda telah mengonfigurasi Horizontal Pod Autoscaler di Deployment userservice
berdasarkan metrik Kubernetes bawaan untuk penggunaan CPU. Untuk Deployment frontend
, sebaiknya Anda menskalakan berdasarkan jumlah permintaan HTTP yang masuk. Pendekatan ini menggunakan adaptor Stackdriver untuk membaca metrik kustom dari Monitoring untuk objek Ingress Load Balancer HTTP(S).
Tinjau manifes
HorizontalPodAutoscaler
untuk Deploymentfrontend
:Manifes ini menggunakan kolom berikut:
spec.scaleTargetRef
: Resource Kubernetes yang akan diskalakan.spec.minReplicas
: Jumlah minimum replika, yaitu5
dalam contoh ini.spec.maxReplicas
: Jumlah maksimum replika, yaitu25
dalam contoh ini.spec.metrics.*
: Metrik yang akan digunakan. Dalam contoh ini, ini adalah jumlah permintaan HTTP per detik, yang merupakan metrik kustom dari Monitoring yang disediakan oleh adaptor yang Anda deploy.spec.metrics.external.metric.selector.matchLabels
: Label resource tertentu yang akan difilter saat penskalaan.
Temukan nama aturan penerusan dari load balancer
frontend
Ingress:export FW_RULE=$(kubectl get ingress frontend -o=jsonpath='{.metadata.annotations.ingress\.kubernetes\.io/forwarding-rule}') echo $FW_RULE
Outputnya mirip dengan hal berikut ini:
k8s2-fr-j76hrtv4-default-frontend-wvvf7381
Tambahkan aturan penerusan Anda ke manifes:
sed -i "s/FORWARDING_RULE_NAME/$FW_RULE/g" "extras/postgres-hpa/hpa/frontend.yaml"
Perintah ini menggantikan
FORWARDING_RULE_NAME
dengan aturan penerusan yang Anda simpan.Terapkan manifes ke cluster:
kubectl apply -f extras/postgres-hpa/hpa/frontend.yaml
Menyimulasikan beban
Di bagian ini, Anda akan menggunakan generator beban untuk menyimulasikan lonjakan traffic dan mengamati jumlah replika serta peningkatan jumlah node untuk mengakomodasi peningkatan beban dari waktu ke waktu. Kemudian, Anda dapat berhenti menghasilkan traffic dan mengamati penurunan jumlah replika dan node sebagai respons.
Sebelum memulai, periksa status Horizontal Pod Autoscaler dan lihat jumlah replika yang digunakan.
Dapatkan status resource
HorizontalPodAutoscaler
Anda:kubectl get hpa
Output-nya mirip dengan berikut ini yang menunjukkan ada 1 replika
frontend
dan 5 replikauserservice
:NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS AGE frontend Deployment/frontend <unknown>/5 (avg) 5 25 1 34s userservice Deployment/userservice 0%/60% 5 50 5 4m56s
Aplikasi contoh Cymbal Bank menyertakan Layanan
loadgenerator
. Layanan ini terus mengirim permintaan yang meniru pengguna ke frontend, dan secara berkala membuat akun baru dan menyimulasikan transaksi di antara akun tersebut.Ekspos antarmuka web
loadgenerator
secara lokal. Anda menggunakan antarmuka ini untuk menyimulasikan beban pada aplikasi contoh Cymbal Bank:kubectl port-forward svc/loadgenerator 8080
Jika Anda melihat pesan error, coba lagi saat Pod berjalan.
Di browser di komputer, buka antarmuka web generator beban:
- Jika Anda menggunakan shell lokal, buka browser, lalu buka http://127.0.0.1:8080.
- Jika Anda menggunakan Cloud Shell, klik Web preview, lalu klik Preview on port 8080.
Di antarmuka web generator beban, jika nilai Kegagalan menampilkan
100%
, selesaikan langkah-langkah berikut untuk memperbarui setelan pengujian:- Klik tombol Berhenti di samping penghitung rasio kegagalan.
- Di bagian Status, klik opsi untuk Pengujian baru.
- Perbarui nilai Host ke alamat IP ingress Cymbal Bank Anda.
- Klik Start swarming.
Di antarmuka web generator beban, klik tab Diagram untuk mengamati performa dari waktu ke waktu. Lihat jumlah permintaan dan penggunaan resource.
Buka jendela terminal baru dan lihat jumlah replika Pod
frontend
danuserservice
Anda:kubectl get hpa -w
Jumlah replika meningkat seiring dengan bertambahnya beban. Tindakan scaleUp mungkin memerlukan waktu sekitar sepuluh menit saat cluster mengenali bahwa metrik yang dikonfigurasi mencapai nilai minimum yang ditentukan, dan menggunakan Horizontal Pod Autoscaler untuk menskalakan jumlah Pod.
Contoh output berikut menunjukkan bahwa jumlah replika telah meningkat saat generator beban berjalan:
NAME REFERENCE TARGETS MINPODS MAXPODS REPLICAS frontend Deployment/frontend 5200m/5 (avg) 5 25 13 userservice Deployment/userservice 71%/60% 5 50 17
Buka jendela terminal lain dan periksa jumlah node dalam cluster:
gcloud container clusters list \ --filter='name=scalable-apps' \ --format='table(name, currentMasterVersion, currentNodeVersion, currentNodeCount)' \ --region="REGION"
Ganti
REGION
dengan region tempat cluster Anda berjalan.Jumlah node juga telah meningkat dari jumlah awal untuk mengakomodasi replika baru. Peningkatan jumlah node ini didukung oleh GKE Autopilot. Tidak ada yang perlu Anda konfigurasikan untuk skala node ini.
Buka antarmuka generator beban, lalu klik Stop untuk mengakhiri pengujian.
Periksa lagi jumlah replika dan jumlah node, lalu amati apakah jumlahnya berkurang dengan berkurangnya beban. Penurunan skala mungkin memerlukan waktu karena periode stabilisasi default untuk replika di resource
HorizontalPodAutoscaler
Kubernetes adalah lima menit.
Di lingkungan nyata, jumlah node dan Pod di lingkungan Anda akan otomatis diskalakan naik dan turun dengan cara yang sama seperti dengan beban simulasi ini. Aplikasi contoh Cymbal Bank dirancang untuk mengakomodasi jenis penskalaan ini. Hubungi operator Aplikasi dan engineer keandalan situs (SRE) atau developer Aplikasi untuk melihat apakah beban kerja mereka dapat memanfaatkan fitur penskalaan ini.
Pembersihan
Rangkaian tutorial untuk Cymbal Bank dirancang untuk diselesaikan satu per satu. Seiring Anda menyelesaikan serangkaian tutorial, Anda akan mempelajari keterampilan baru dan menggunakan produk dan layanan Google Cloud tambahan.
Jika Anda ingin beristirahat sebelum melanjutkan ke tutorial berikutnya dan menghindari biaya pada akun Google Cloud Anda untuk resource yang digunakan dalam tutorial ini, hapus project yang Anda buat.
- Di konsol Google Cloud, buka halaman Manage resource.
- Pada daftar project, pilih project yang ingin Anda hapus, lalu klik Delete.
- Pada dialog, ketik project ID, lalu klik Shut down untuk menghapus project.
Langkah selanjutnya
Pelajari cara menyimulasikan kegagalan di GKE dalam tutorial berikutnya.