Questo documento mostra come selezionare classi di calcolo specifiche per eseguire carichi di lavoro che
hanno requisiti hardware unici nei cluster Google Kubernetes Engine (GKE)
Autopilot. Prima di leggere questo documento,
assicurati di conoscere il concetto
di classi di computing in GKE Autopilot.
Panoramica delle classi di computing Autopilot
Autopilot offre classi di computing progettate per eseguire carichi di lavoro con requisiti hardware specifici. Queste classi di computing sono utili per workload come il machine learning e le attività di AI o per l'esecuzione di database ad alto traffico in tempo reale.
Queste classi di computing sono un sottoinsieme delle serie di macchine di Compute Engine e offrono una flessibilità maggiore rispetto alla classe di computing per uso generico Autopilot predefinita.
Ad esempio, la classe Scale-Out disattiva il multi-threading simultaneo in modo che ogni
vCPU sia un core fisico.
In base alle esigenze dei singoli pod, puoi configurare i pod Autopilot regolari o i pod Spot per richiedere nodi supportati da queste classi di calcolo. Puoi anche richiedere un'architettura della CPU specifica, ad esempio
Arm, nelle classi di calcolo che
supportano questa architettura.
Prima di iniziare
Prima di iniziare, assicurati di aver eseguito le seguenti operazioni:
Se vuoi utilizzare Google Cloud CLI per questa attività,
installala e poi
inizializza
gcloud CLI. Se hai già installato gcloud CLI, scarica l'ultima versione
eseguendo gcloud components update.
Richiedere una classe di computing nel pod Autopilot
Per indicare ad Autopilot di posizionare i pod su una classe di calcolo specifica,
specifica l'etichetta cloud.google.com/compute-class in un
nodeSelector
o in una regola di affinità dei nodi,
come nei seguenti esempi:
Puoi anche richiedere classi di calcolo specifiche per i tuoi Spot Pod.
Specifica le richieste di risorse
Quando scegli una classe di calcolo, assicurati di specificare le richieste di risorse
per i tuoi pod in base alle
richieste di risorse minime e massime
per la classe selezionata. Se le richieste sono inferiori al minimo,
Autopilot le aumenta automaticamente. Tuttavia, se le tue
richieste sono superiori al massimo, Autopilot non esegue il deployment dei
pod e visualizza un messaggio di errore.
Scegliere un'architettura CPU
Alcune classi di calcolo supportano più architetture CPU. Ad esempio, la classe
Scale-Out supporta le architetture Arm e x86. Se non richiedi un'architettura specifica, Autopilot esegue il provisioning dei nodi con l'architettura predefinita della classe di computing specificata. Se i tuoi pod devono
utilizzare un'architettura diversa, richiedila nel selettore di nodi
o nella regola di affinità dei nodi, insieme alla richiesta di classe di calcolo. La classe di calcolo
che richiedi deve supportare l'architettura della CPU specificata.
[[["Facile da capire","easyToUnderstand","thumb-up"],["Il problema è stato risolto","solvedMyProblem","thumb-up"],["Altra","otherUp","thumb-up"]],[["Difficile da capire","hardToUnderstand","thumb-down"],["Informazioni o codice di esempio errati","incorrectInformationOrSampleCode","thumb-down"],["Mancano le informazioni o gli esempi di cui ho bisogno","missingTheInformationSamplesINeed","thumb-down"],["Problema di traduzione","translationIssue","thumb-down"],["Altra","otherDown","thumb-down"]],["Ultimo aggiornamento 2025-09-04 UTC."],[],[],null,["# Choose compute classes for Autopilot Pods\n\n[Autopilot](/kubernetes-engine/docs/concepts/autopilot-overview)\n\n*** ** * ** ***\n\nThis document shows you how to select specific compute classes to run workloads that\nhave unique hardware requirements in your Google Kubernetes Engine (GKE)\nAutopilot clusters. Before reading this document,\nensure that you're familiar with the concept\nof [compute classes in GKE Autopilot](/kubernetes-engine/docs/concepts/autopilot-compute-classes).\n\nOverview of Autopilot compute classes\n-------------------------------------\n\nAutopilot offers *compute classes* that are designed to run\nworkloads that have specific hardware requirements. These compute classes are\nuseful for workloads such as machine learning and AI tasks, or running real-time\nhigh traffic databases.\n\nThese compute classes are a subset of the Compute Engine\n[machine series](/compute/docs/machine-types#machine_type_comparison), and offer\nflexibility beyond the default Autopilot general-purpose compute class.\nFor example, the `Scale-Out` class turns off simultaneous multi-threading so that each\nvCPU is one physical core.\n\nBased on your individual Pod needs, you can configure your regular\nAutopilot Pods or your Spot Pods to request nodes backed by\nthese compute classes. You can also request specific CPU architecture, such as\n[Arm](https://www.arm.com/architecture), in compute classes that\nsupport that architecture.\n\nBefore you begin\n----------------\n\nBefore you start, make sure that you have performed the following tasks:\n\n- Enable the Google Kubernetes Engine API.\n[Enable Google Kubernetes Engine API](https://console.cloud.google.com/flows/enableapi?apiid=container.googleapis.com)\n- If you want to use the Google Cloud CLI for this task, [install](/sdk/docs/install) and then [initialize](/sdk/docs/initializing) the gcloud CLI. If you previously installed the gcloud CLI, get the latest version by running `gcloud components update`. **Note:** For existing gcloud CLI installations, make sure to set the `compute/region` [property](/sdk/docs/properties#setting_properties). If you use primarily zonal clusters, set the `compute/zone` instead. By setting a default location, you can avoid errors in the gcloud CLI like the following: `One of [--zone, --region] must be supplied: Please specify location`. You might need to specify the location in certain commands if the location of your cluster differs from the default that you set.\n\n\u003c!-- --\u003e\n\n- [Ensure that you have a GKE Autopilot cluster](/kubernetes-engine/docs/how-to/creating-an-autopilot-cluster) running GKE version 1.24.1-gke.1400 or later.\n\nRequest a compute class in your Autopilot Pod\n---------------------------------------------\n\nTo tell Autopilot to place your Pods on a specific compute class, specify the `cloud.google.com/compute-class` label in a [nodeSelector](https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#nodeselector) or a [node affinity rule](https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity), such as in the following examples:\n\n### nodeSelector\n\n```yaml\n apiVersion: apps/v1\n kind: Deployment\n metadata:\n name: hello-app\n spec:\n replicas: 3\n selector:\n matchLabels:\n app: hello-app\n template:\n metadata:\n labels:\n app: hello-app\n spec:\n nodeSelector:\n cloud.google.com/compute-class: \"\u003cvar translate=\"no\"\u003eCOMPUTE_CLASS\u003c/var\u003e\"\n containers:\n - name: hello-app\n image: us-docker.pkg.dev/google-samples/containers/gke/hello-app:1.0\n resources:\n requests:\n cpu: \"2000m\"\n memory: \"2Gi\"\n \n```\n\nReplace \u003cvar translate=\"no\"\u003eCOMPUTE_CLASS\u003c/var\u003e with the name of the [compute class](/kubernetes-engine/docs/concepts/autopilot-compute-classes#when-to-use)\nbased on your use case, such as `Scale-Out`. If you select `Accelerator`,\nyou must also specify a compatible GPU. For instructions, see [Deploy GPU workloads in Autopilot](/kubernetes-engine/docs/how-to/autopilot-gpus). If\nyou select `Performance`, you can optionally select a Compute Engine machine\nseries in the node selector. If you don't specify a machine series, GKE uses the\nC4 machine series depending on [regional\navailability](/compute/docs/regions-zones#available). For instructions, see [Run CPU-intensive workloads with optimal\nperformance](/kubernetes-engine/docs/how-to/performance-pods).\n\n### nodeAffinity\n\n```yaml\n apiVersion: apps/v1\n kind: Deployment\n metadata:\n name: hello-app\n spec:\n replicas: 3\n selector:\n matchLabels:\n app: hello-app\n template:\n metadata:\n labels:\n app: hello-app\n spec:\n terminationGracePeriodSeconds: 25\n containers:\n - name: hello-app\n image: us-docker.pkg.dev/google-samples/containers/gke/hello-app:1.0\n resources:\n requests:\n cpu: \"2000m\"\n memory: \"2Gi\"\n ephemeral-storage: \"1Gi\"\n affinity:\n nodeAffinity:\n requiredDuringSchedulingIgnoredDuringExecution:\n nodeSelectorTerms:\n - matchExpressions:\n - key: cloud.google.com/compute-class\n operator: In\n values:\n - \"\u003cvar translate=\"no\"\u003eCOMPUTE_CLASS\u003c/var\u003e\"\n \n```\n\nReplace \u003cvar translate=\"no\"\u003eCOMPUTE_CLASS\u003c/var\u003e with the name of the\n[compute\nclass](/kubernetes-engine/docs/concepts/autopilot-compute-classes#when-to-use) based on your use case, such as `Scale-Out`. If you select\n`Accelerator`, you must also specify a compatible GPU. For instructions, see [Deploy GPU workloads in Autopilot](/kubernetes-engine/docs/how-to/autopilot-gpus).\nIf you select `Performance`, you can optionally select a\nCompute Engine machine series in the node selector. If you don't specify a machine series, GKE uses the C4\nmachine series depending on [regional\navailability](/compute/docs/regions-zones#available). For instructions, see [Run CPU-intensive workloads with\noptimal performance](/kubernetes-engine/docs/how-to/performance-pods).\n\nYou can also request specific compute classes for your Spot Pods.\n\n### Specify resource requests\n\nWhen you choose a compute class, make sure that you specify resource requests\nfor your Pods based on the\n[Minimum and maximum resource requests](/kubernetes-engine/docs/concepts/autopilot-resource-requests#min-max-requests)\nfor your selected class. If your requests are less than the minimum,\nAutopilot automatically scales your requests up. However, if your\nrequests are greater than the maximum, Autopilot does not deploy your\nPods and displays an error message.\n\nChoose a CPU architecture\n-------------------------\n\nSome compute classes support multiple CPU architectures. For example, the\n`Scale-Out` class supports both Arm and x86 architectures. If you\ndon't request a specific architecture, Autopilot provisions nodes that\nhave the default architecture of the specified compute class. If your Pods need\nto use a different architecture, request that architecture in your node selector\nor node affinity rule, alongside your compute class request. The compute class\nthat you request must support the CPU architecture you specify.\n\nFor instructions, refer to\n[Deploy Autopilot Pods on Arm architecture](/kubernetes-engine/docs/how-to/autopilot-arm-workloads).\n\nWhat's next\n-----------\n\n- [Learn more about Autopilot cluster architecture](/kubernetes-engine/docs/concepts/autopilot-architecture).\n- [Learn about the lifecycle of Pods](https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/).\n- [Learn about the available Autopilot compute classes](/kubernetes-engine/docs/concepts/autopilot-compute-classes).\n- [Read about the default, minimum, and maximum resource requests for each\n platform](/kubernetes-engine/docs/concepts/autopilot-resource-requests)."]]