Acelerador de adquisición a pago de SAP

El acelerador de SAP para el proceso de compra a pago es una implementación de muestra de la función Fuente de lotes de tablas de SAP en Cloud Data Fusion. El acelerador de Adquisiciones a pagos de SAP te ayuda a comenzar cuando creas el proceso y las estadísticas de adquisición y pago de extremo a extremo. Incluye canalizaciones de muestra de Cloud Data Fusion que puedes configurar para realizar las siguientes tareas:

  • Conéctate a la fuente de datos de SAP.
  • Realiza transformaciones en tus datos en Cloud Data Fusion.
  • Almacena tus datos en BigQuery.
  • Configura estadísticas en Looker. Esto incluye paneles y un modelo de AA, en el que puedes definir los indicadores de rendimiento clave (KPI) para tu proceso de compra y pago.

En esta guía, se describe la implementación de muestra y cómo comenzar a usar tus configuraciones.

El acelerador está disponible en entornos de Cloud Data Fusion que se ejecutan en la versión 6.4.0 y versiones posteriores.

Antes de comenzar

  1. Sign in to your Google Account.

    If you don't already have one, sign up for a new account.

  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Data Fusion and BigQuery APIs.

    Enable the APIs

  5. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  6. Make sure that billing is enabled for your Google Cloud project.

  7. Enable the Cloud Data Fusion and BigQuery APIs.

    Enable the APIs

  8. Descarga la Fuente de Batch de tablas de SAP.
  9. Debes tener acceso a una instancia de Looker y tener activada la función de labs de Marketplace para instalar el bloque de Looker. Puedes solicitar una prueba gratuita para obtener acceso a una instancia.

Habilidades requeridas

Para configurar el acelerador de adquisición de pagos de SAP, se requieren las siguientes habilidades:

Usuarios obligatorios

Los parámetros de configuración que se describen en esta página requieren cambios en tu sistema SAP y en Google Cloud. Debes trabajar con los siguientes usuarios de esos sistemas para realizar las configuraciones:

Tipo de usuario Descripción
Administrador de SAP Es el administrador de tu sistema SAP que puede acceder al sitio del servicio de SAP para descargar software.
Usuario de SAP Es un usuario de SAP autorizado para conectarse a un sistema SAP.
Administrador de GCP Es un administrador que controla el acceso de IAM para tu organización, que crea e implementa cuentas de servicio y otorga permisos para Cloud Data Fusion, BigQuery y Looker.
Usuario de Cloud Data Fusion Son usuarios autorizados para diseñar y ejecutar canalizaciones de datos en Cloud Data Fusion.
Propietario de datos de BigQuery Son usuarios autorizados para crear, ver y modificar conjuntos de datos de BigQuery.
Desarrollador de Looker Estos usuarios pueden instalar el bloque de Looker a través de Marketplace. Deben tener permisos develop, manage_model y deploy.

Funciones de IAM obligatorias

En la implementación de muestra del acelerador, se requieren las siguientes funciones de IAM. Es posible que necesites funciones adicionales si tu proyecto se basa en otros servicios de Google Cloud.

Descripción general del proceso

Sigue estos pasos para implementar el acelerador en tu proyecto:

  1. Configura el sistema SAP ERP y, luego, instala el transporte SAP proporcionado.
  2. Configura tu entorno de Cloud Data Fusion para usar el complemento de la Fuente de Batch de tablas de SAP.
  3. Crea conjuntos de datos en BigQuery. El acelerador proporciona conjuntos de datos de muestra para tablas de etapa de pruebas, dimensionales y de hechos.
  4. Configura las canalizaciones de Cloud Data Fusion de muestra del acelerador para integrar tus datos de SAP.
  5. Desde Cloud Data Fusion Hub, implementa las canalizaciones asociadas con el proceso de análisis de adquisición y pago. Estas canalizaciones se deben configurar de forma correcta para crear el conjunto de datos de BigQuery.
  6. Conecta Looker al proyecto de BigQuery.
  7. Instala e implementa el bloque de Looker.

Para obtener más información, consulta Usa el complemento de la Fuente de Batch de tablas de SAP.

Conjuntos de datos de muestra en BigQuery

En la implementación de muestra en este acelerador, los siguientes conjuntos de datos se crean en BigQuery.

Nombre del conjunto de datos Descripción
sap_cdf_staging Contiene todas las tablas del sistema de la fuente de SAP, como se identifica para ese proceso empresarial.
sap_cdf_dimension Contiene las entidades de dimensión clave, como Dimensión del cliente y Dimensión material.
sap_cdf_fact Contiene las tablas de hechos generadas a partir de la canalización.

Canalizaciones de muestra en Cloud Data Fusion

Las canalizaciones de muestra para este acelerador están disponibles en el centro de noticias de Cloud Data Fusion.

Para obtener las canalizaciones de muestra del centro de noticias de, sigue estos pasos:

  1. Ve a tu instancia:
    1. En la consola de Google Cloud, ve a la página de Cloud Data Fusion.

    2. Para abrir la instancia en Cloud Data Fusion Studio, haz clic en Instancias y, luego, en Ver instancia.

      Ir a Instancias

  2. Haz clic en Hub.
  3. Selecciona la pestaña SAP.
  4. Selecciona Canalizaciones. Se abrirá una página de canalizaciones de muestra.
  5. Selecciona las canalizaciones deseadas para descargarlas.

Cada una de las canalizaciones contiene macros que puedes configurar para que se ejecuten en tu entorno.

Existen tres tipos de canalizaciones de muestra:

  • Canalizaciones de la capa de etapa de pruebas: El conjunto de datos de etapa de pruebas en este tipo de canalización es una asignación directa a la tabla de origen original en SAP. Las canalizaciones de la capa de etapa de pruebas de muestra tienen nombres que hacen referencia a la tabla de origen de SAP y la tabla de destino de BigQuery. Por ejemplo, una canalización llamada LFA1_Supplier_Master hace referencia a la tabla de origen de SAP (LFA1) y la tabla de destino de BigQuery (CustomerMaster).
  • Canalizaciones de la capa de dimensión: El conjunto de datos de la capa de dimensión en este tipo de canalización es una versión seleccionada y definida del conjunto de datos de etapa de pruebas que crea la dimensión y los hechos necesarios para el análisis. Las canalizaciones de muestra tienen nombres que hacen referencia a la entidad de destino en el conjunto de datos de BigQuery de destino. Por ejemplo, una canalización llamada customer_dimension hace referencia a la entidad de dimensión del cliente en el conjunto de datos sap_cdf_fact de BigQuery.
  • Canalizaciones de la capa de hechos: El conjunto de datos de la capa de hechos es una versión seleccionada y definida mejor del conjunto de datos de etapa de pruebas que crea los hechos necesarios para el análisis. Estas canalizaciones de muestra tienen nombres que hacen referencia a la entidad de destino en el conjunto de datos de BigQuery de destino. Por ejemplo, una canalización llamada sales_order_fact entrega datos seleccionados a la entidad de hechos del pedido de ventas en el conjunto de datos sap_cdf_fact correspondiente de BigQuery.

En las siguientes secciones, se resume cómo hacer que las canalizaciones funcionen en tu entorno.

Configura las canalizaciones de la capa de etapa de pruebas

Existen dos pasos de configuración para las canalizaciones de etapa de pruebas:

  1. Configura el sistema SAP de origen.
  2. Configura la tabla y el conjunto de datos de BigQuery de destino.

Parámetros para el complemento de la Fuente de Batch de tablas de SAP

El complemento de la Fuente de Batch de tablas de SAP lee el contenido de una tabla o una vista de SAP. El acelerador proporciona las siguientes macro, que puedes modificar para controlar tus conexiones de SAP de forma centralizada.

Nombre de la macro Descripción Ejemplo
${SAP Client} Cliente de SAP que se usará 100
${SAP Language} Lenguaje de inicio de sesión de SAP EN
${SAP Application Server Host} Nombre del servidor de SAP o dirección de IP 10.132.0.47
${SAP System Number} Número de sistema de SAP 00
${secure(saplogonusername)} Nombre de usuario de SAP Para obtener más información, consulta Usa claves seguras.
${secure(saplogonpassword)} Contraseña de usuario de SAP Para obtener más información, consulta Usa claves seguras.
${Number of Rows to Fetch} Limita la cantidad de registros extraídos 100000

Para obtener más información, consulta Configura el operador.

Parámetros para el destino de BigQuery

El acelerador proporciona las siguientes macro para los destinos de BigQuery.

Configuración del conector de destino de BigQuery

Nombre de la macro Descripción Ejemplo
${ProjectID} Es el ID del proyecto en el que se creó el conjunto de datos de BigQuery. sap_adaptor
${Dataset} Conjunto de datos de destino sap_cdf_staging

Canalizaciones de muestra usadas para los KPI de proceso de compra y pago

Las siguientes entidades comerciales clave en el proceso de adquisición y pago corresponden a canalizaciones de muestra en el acelerador. Estas canalizaciones entregan los datos que potencian las estadísticas de estas entidades.

Entidades comerciales clave Nombre de la canalización correspondiente
Supplier Las tablas fuente de SAP capturan detalles sobre el proveedor en relación con la empresa. La información de estas tablas contribuye a supplier_dimension en la capa dimensional del almacén de datos. LFA1_SupplierMaster
LFB1_SupplierMasterCompanyCode
BUT000_BPGeneralInformation
Material o Product son los productos básicos que se comercian entre la empresa y sus clientes. La información de estas tablas contribuye a material_dimension en la capa dimensional del almacén de datos. MARA_MaterialMaster
El proceso de adquisición para pagar comienza con un pedido, que incluye la cantidad de pedidos y los detalles de los elementos materiales. EKKO_PurchaseOrderHeader
EKPO_PurchaseOrdertItem
El subproceso de recibo de productos, que incluye detalles de movimiento de los artículos de Material. MATDOC_GoodsReceipt
Los subprocesos de Facturación, que incluyen los detalles de los documentos de facturación solicitados. RBKP_InvoiceHeader
RSEG_InvoiceLineItem
El proceso de adquisición para pagar finaliza cuando se registra el pago de la factura en tu sistema. ACDOCA_UniversalJournalItem

Todas las canalizaciones de etapas de pruebas de Cloud Data Fusion

Las siguientes muestras de canalización de la etapa de pruebas de Cloud Data Fusion están disponibles en el acelerador:

  • ACDOCA_JournalLedgerDetails
  • ADR6_SupplierMasterEMailDetails
  • ADRC_SupplierMasterAddressDetails
  • BKPF_AccountingDocumentHeaderDetail
  • BSEG_AccountDocumentItem
  • BUT000_BusinessPartnerGeneralDataDetails
  • BUT020_BusinessPartnerAddressDetails
  • CEPCT_ProfitCenterDescription
  • EBAN_PurchaseRequisitionDetails
  • EKBE_PurchaseOrderHistoryDetail
  • EKET_PurchaseOrderScheduleLinesDetail
  • EKKO_PurchaseOrderHeaderDetail
  • EKPO_PurchaseOrderItemDetail
  • FINSC_BTTYPE_T_BusinessTransactionTypeDescription
  • FINSC_LEDGER_T_JournalLedgerDescription
  • LFA1_SupplierMasterDetails
  • LFB1_SupplierMasterCompanyCodeDetails
  • MARA_MaterialMaster
  • MATDOC_MaterialMovementDetails
  • MKPF_MaterialMovementHeaderDetail
  • MSEG_MaterialMovementItemDetail
  • RBKP_InvoiceReceiptHeaderDetail
  • RSEG_IncomingInvoiceItemDetail
  • T001_CompanyCodes
  • T001_CompanyCodes
  • T001K_ValuationAreaDetails
  • T001L_MaterialStorageLocation
  • T001W_PlantDetails
  • T002T_LanguageKeyDescription
  • T003T_AccountingDocumentTypeDescription
  • T005_CountryMaster
  • T006A_UnitOfMeasure
  • T007S_PurchaseSalesTaxCodeDescription
  • T023T_MaterialGroupDescription
  • T024_PurchasingGroupsDetails
  • T024E_PurchasingOrganizationsDetails
  • T024W_PlantPurchasingOrganizationsDetails
  • T156HT_MaterialMovementTypeDescription
  • T161T_PurchasingDocumentTypeDescription
  • T163M_ConfirmationCategoryDescription
  • T16FE_PurchaseDocumentReleaseIndicatorDescription
  • TBSLT_PostingKeyDescription
  • TCURT_CurrencyCodesText
  • TKA01_ControllingAreaMaster

Configura canalizaciones de la capa dimensional

Puedes extraer los KPI de tablas de SAP de origen. A fin de preparar los datos para el análisis, organiza los datos en la tabla de origen a fin de que coincidan con la estructura del esquema de la tabla de BigQuery.

El acelerador crea las siguientes tablas de muestra:

Nombre de la tabla Descripción de la tabla
Supplier_dimension Lista seleccionada* de proveedores y los datos asociados, como información general y relacionada con las ventas de los proveedores.
Material_dimension Lista seleccionada de materiales y hechos asociados, como el número de SKU, la jerarquía de los productos y la clasificación.
Purchase_Order_Fact Lista de órdenes de compra, incluida la organización, el grupo y el tipo de pedido.
Goods_Receipt_Fact Lista seleccionada de recibos de bienes, que incluye información sobre el centro de ganancias y el tipo de movimiento.
Invoice_Fact Lista seleccionada de información relacionada con las facturas, que incluye el tipo, la cantidad de elementos, el valor y la fecha de publicación de la factura
Accounting_Fact Lista seleccionada de publicaciones de contabilidad para cada elemento de una sola línea de orden de compra.

*En este contexto, la lista seleccionada proviene de la lógica empresarial que se aplica a la lista de columnas seleccionada.

El acelerador compila la capa dimensional del conjunto de datos de BigQuery con secuencias de comandos de SQL, que puedes modificar para tu proyecto. Por ejemplo, puedes adaptar estas secuencias de comandos para agregar más columnas a las entidades de conjunto de datos de BigQuery de destino.

Transformación a un esquema en estrella: nombres de las canalizaciones del ejecutor de BigQuery

Las siguientes canalizaciones del ejecutor de BigQuery en Cloud Data Fusion cargan datos en tablas de dimensiones y hechos:

Todas las canalizaciones de transformación dimensionales:

  • Supplier_dimension
  • Material_dimension
  • Purchase_Order_Fact
  • Goods_Receipt_Fact
  • Invoice_Fact
  • Accounting_Fact

Configuración del ejecutor de BigQuery

Nombre de la macro Ejemplo
${ProjectID} sap_adaptor
${StagingDatasetName} sap_cdf_staging
${TargetDatasetName} sap_cdf_dimension

Conecta Looker al proyecto de BigQuery.

Para conectar Looker a BigQuery, consulta la documentación de Looker sobre las conexiones de BigQuery.

Instala el bloque

Puedes acceder al bloque de Looker de SAP en GitHub.

Looker Block instala un modelo LookML preconfigurado con dos Explorar entornos y dos paneles.

¿Qué sigue?