Dataset-Labels abrufen

Labels eines Datasets für eine bestimmte Dataset-ID abrufen

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Go in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import (
	"context"
	"fmt"
	"io"

	"cloud.google.com/go/bigquery"
)

// printDatasetLabels retrieves label metadata from a dataset and prints it to an io.Writer.
func printDatasetLabels(w io.Writer, projectID, datasetID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydataset"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	meta, err := client.Dataset(datasetID).Metadata(ctx)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Dataset %s labels:\n", datasetID)
	if len(meta.Labels) == 0 {
		fmt.Fprintln(w, "Dataset has no labels defined.")
		return nil
	}
	for k, v := range meta.Labels {
		fmt.Fprintf(w, "\t%s:%s\n", k, v)
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Dataset;

// Sample to get dataset labels
public class GetDatasetLabels {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    getDatasetLabels(datasetName);
  }

  public static void getDatasetLabels(String datasetName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      Dataset dataset = bigquery.getDataset(datasetName);
      dataset
          .getLabels()
          .forEach((key, value) -> System.out.println("Retrieved labels successfully"));
    } catch (BigQueryException e) {
      System.out.println("Label was not found. \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function getDatasetLabels() {
  // Gets labels on a dataset.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";

  // Retrieve current dataset metadata.
  const dataset = bigquery.dataset(datasetId);
  const [metadata] = await dataset.getMetadata();
  const labels = metadata.labels;

  console.log(`${datasetId} Labels:`);
  for (const [key, value] of Object.entries(labels)) {
    console.log(`${key}: ${value}`);
  }
}
getDatasetLabels();

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.


from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set dataset_id to the ID of the dataset to fetch.
# dataset_id = "your-project.your_dataset"

dataset = client.get_dataset(dataset_id)  # Make an API request.

# View dataset labels.
print("Dataset ID: {}".format(dataset_id))
print("Labels:")
if dataset.labels:
    for label, value in dataset.labels.items():
        print("\t{}: {}".format(label, value))
else:
    print("\tDataset has no labels defined.")

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.