Create a routine

Create a routine within an existing dataset.

Code sample

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createRoutine demonstrates creating a new BigQuery UDF using the routine API.
func createRoutine(projectID, datasetID, routineID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// routineID := "myroutineid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	metaData := &bigquery.RoutineMetadata{
		Type:     "SCALAR_FUNCTION",
		Language: "SQL",
		Body:     "x * 3",
		Arguments: []*bigquery.RoutineArgument{
			{Name: "x", DataType: &bigquery.StandardSQLDataType{TypeKind: "INT64"}},
		},
	}

	routineRef := client.Dataset(datasetID).Routine(routineID)
	if err := routineRef.Create(ctx, metaData); err != nil {
		return err
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.RoutineArgument;
import com.google.cloud.bigquery.RoutineId;
import com.google.cloud.bigquery.RoutineInfo;
import com.google.cloud.bigquery.StandardSQLDataType;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.common.collect.ImmutableList;

// Sample to create a routine
public class CreateRoutine {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String routineName = "MY_ROUTINE_NAME";
    createRoutine(datasetName, routineName);
  }

  public static void createRoutine(String datasetName, String routineName) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      RoutineId routineId = RoutineId.of(datasetName, routineName);

      RoutineInfo routineInfo =
          RoutineInfo.newBuilder(routineId)
              .setRoutineType("SCALAR_FUNCTION")
              .setLanguage("SQL")
              .setBody("x * 3")
              .setArguments(
                  ImmutableList.of(
                      RoutineArgument.newBuilder()
                          .setName("x")
                          .setDataType(
                              StandardSQLDataType.newBuilder(StandardSQLTypeName.INT64).build())
                          .build()))
              .build();
      bigquery.create(routineInfo);
      System.out.println("Routine created successfully");
    } catch (BigQueryException e) {
      System.out.println("Routine was not created. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library and create a client
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createRoutine() {
  // Creates a new routine named "my_routine" in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = 'my_dataset';
  // const routineId = 'my_routine';

  const dataset = bigquery.dataset(datasetId);

  // Create routine reference
  let routine = dataset.routine(routineId);

  const config = {
    arguments: [
      {
        name: 'x',
        dataType: {
          typeKind: 'INT64',
        },
      },
    ],
    definitionBody: 'x * 3',
    routineType: 'SCALAR_FUNCTION',
    returnType: {
      typeKind: 'INT64',
    },
  };

  // Make API call
  [routine] = await routine.create(config);

  console.log(`Routine ${routineId} created.`);
}
createRoutine();

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Choose a fully qualified ID for the routine.
# routine_id = "my-project.my_dataset.my_routine"

routine = bigquery.Routine(
    routine_id,
    type_="SCALAR_FUNCTION",
    language="SQL",
    body="x * 3",
    arguments=[
        bigquery.RoutineArgument(
            name="x",
            data_type=bigquery.StandardSqlDataType(
                type_kind=bigquery.StandardSqlTypeNames.INT64
            ),
        )
    ],
)

routine = client.create_routine(routine)  # Make an API request.

print("Created routine {}".format(routine.reference))

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.