Create an integer-range partitioned table

Create a new integer-range partitioned table in an existing dataset.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

C#

Before trying this sample, follow the C# setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery C# API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.


using Google.Apis.Bigquery.v2.Data;
using Google.Cloud.BigQuery.V2;

public class BigQueryCreateTableRangePartitioned
{
    public BigQueryTable CreateTable(string projectId, string datasetId, string tableId)
    {
        BigQueryClient client = BigQueryClient.Create(projectId);
        var dataset = client.GetDataset(datasetId);

        // Note: The field must be a top- level, NULLABLE/REQUIRED field.
        // The only supported type is INTEGER/INT64.
        var partitioning = new RangePartitioning
        {
            Field = "integerField",
            Range = new RangePartitioning.RangeData
            {
                Start = 1,
                Interval = 2,
                End = 10
            }
        };
        var schema = new TableSchemaBuilder
        {
            { "integerField", BigQueryDbType.Int64 },
            { "stringField", BigQueryDbType.String },
            { "booleanField", BigQueryDbType.Bool },
            { "dateField", BigQueryDbType.Date }
        }.Build();

        var table = new Table
        {
            RangePartitioning = partitioning,
            Schema = schema
        };
        return dataset.CreateTable(tableId, table);
    }
}

Go

Before trying this sample, follow the Go setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Go API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// createTableRangeParitioned demonstrates creating a table and specifying a
// range partitioning configuration.
func createTableRangePartitioned(projectID, datasetID, tableID string) error {
	// projectID := "my-project-id"
	// datasetID := "mydatasetid"
	// tableID := "mytableid"
	ctx := context.Background()

	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	sampleSchema := bigquery.Schema{
		{Name: "full_name", Type: bigquery.StringFieldType},
		{Name: "city", Type: bigquery.StringFieldType},
		{Name: "zipcode", Type: bigquery.IntegerFieldType},
	}

	metadata := &bigquery.TableMetadata{
		RangePartitioning: &bigquery.RangePartitioning{
			Field: "zipcode",
			Range: &bigquery.RangePartitioningRange{
				Start:    0,
				End:      100000,
				Interval: 10,
			},
		},
		Schema: sampleSchema,
	}
	tableRef := client.Dataset(datasetID).Table(tableID)
	if err := tableRef.Create(ctx, metadata); err != nil {
		return err
	}
	return nil
}

Java

Before trying this sample, follow the Java setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Java API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.Field;
import com.google.cloud.bigquery.RangePartitioning;
import com.google.cloud.bigquery.Schema;
import com.google.cloud.bigquery.StandardSQLTypeName;
import com.google.cloud.bigquery.StandardTableDefinition;
import com.google.cloud.bigquery.TableId;
import com.google.cloud.bigquery.TableInfo;

// Sample to create a range partitioned table
public class CreateRangePartitionedTable {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    Schema schema =
        Schema.of(
            Field.of("integerField", StandardSQLTypeName.INT64),
            Field.of("stringField", StandardSQLTypeName.STRING),
            Field.of("booleanField", StandardSQLTypeName.BOOL),
            Field.of("dateField", StandardSQLTypeName.DATE));
    createRangePartitionedTable(datasetName, tableName, schema);
  }

  public static void createRangePartitionedTable(
      String datasetName, String tableName, Schema schema) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(datasetName, tableName);

      // Note: The field must be a top- level, NULLABLE/REQUIRED field.
      // The only supported type is INTEGER/INT64
      RangePartitioning partitioning =
          RangePartitioning.newBuilder()
              .setField("integerField")
              .setRange(
                  RangePartitioning.Range.newBuilder()
                      .setStart(1L)
                      .setInterval(2L)
                      .setEnd(10L)
                      .build())
              .build();

      StandardTableDefinition tableDefinition =
          StandardTableDefinition.newBuilder()
              .setSchema(schema)
              .setRangePartitioning(partitioning)
              .build();
      TableInfo tableInfo = TableInfo.newBuilder(tableId, tableDefinition).build();

      bigquery.create(tableInfo);
      System.out.println("Range partitioned table created successfully");
    } catch (BigQueryException e) {
      System.out.println("Range partitioned table was not created. \n" + e.toString());
    }
  }
}

Node.js

Before trying this sample, follow the Node.js setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Node.js API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

// Import the Google Cloud client library
const {BigQuery} = require('@google-cloud/bigquery');
const bigquery = new BigQuery();

async function createTableRangePartitioned() {
  // Creates a new integer range partitioned table named "my_table"
  // in "my_dataset".

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";

  const schema = [
    {name: 'fullName', type: 'STRING'},
    {name: 'city', type: 'STRING'},
    {name: 'zipcode', type: 'INTEGER'},
  ];

  // To use integer range partitioning, select a top-level REQUIRED or
  // NULLABLE column with INTEGER / INT64 data type. Values that are
  // outside of the range of the table will go into the UNPARTITIONED
  // partition. Null values will be in the NULL partition.
  const rangePartition = {
    field: 'zipcode',
    range: {
      start: 0,
      end: 100000,
      interval: 10,
    },
  };

  // For all options, see https://cloud.google.com/bigquery/docs/reference/v2/tables#resource
  const options = {
    schema: schema,
    rangePartitioning: rangePartition,
  };

  // Create a new table in the dataset
  const [table] = await bigquery
    .dataset(datasetId)
    .createTable(tableId, options);

  console.log(`Table ${table.id} created with integer range partitioning: `);
  console.log(table.metadata.rangePartitioning);
}

Python

Before trying this sample, follow the Python setup instructions in the BigQuery quickstart using client libraries. For more information, see the BigQuery Python API reference documentation.

To authenticate to BigQuery, set up Application Default Credentials. For more information, see Set up authentication for client libraries.

from google.cloud import bigquery

# Construct a BigQuery client object.
client = bigquery.Client()

# TODO(developer): Set table_id to the ID of the table to create.
# table_id = "your-project.your_dataset.your_table_name"

schema = [
    bigquery.SchemaField("full_name", "STRING"),
    bigquery.SchemaField("city", "STRING"),
    bigquery.SchemaField("zipcode", "INTEGER"),
]

table = bigquery.Table(table_id, schema=schema)
table.range_partitioning = bigquery.RangePartitioning(
    # To use integer range partitioning, select a top-level REQUIRED /
    # NULLABLE column with INTEGER / INT64 data type.
    field="zipcode",
    range_=bigquery.PartitionRange(start=0, end=100000, interval=10),
)
table = client.create_table(table)  # Make an API request.
print(
    "Created table {}.{}.{}".format(table.project, table.dataset_id, table.table_id)
)

Terraform

To learn how to apply or remove a Terraform configuration, see Basic Terraform commands. For more information, see the Terraform provider reference documentation.

resource "google_bigquery_dataset" "default" {
  dataset_id                      = "mydataset"
  default_partition_expiration_ms = 2592000000  # 30 days
  default_table_expiration_ms     = 31536000000 # 365 days
  description                     = "dataset description"
  location                        = "US"
  max_time_travel_hours           = 96 # 4 days

  labels = {
    billing_group = "accounting",
    pii           = "sensitive"
  }
}

resource "google_bigquery_table" "default" {
  dataset_id          = google_bigquery_dataset.default.dataset_id
  table_id            = "mytable"
  deletion_protection = false # set to "true" in production

  range_partitioning {
    field = "ID"
    range {
      start    = 0
      end      = 1000
      interval = 10
    }
  }
  require_partition_filter = true

  schema = <<EOF
[
  {
    "name": "ID",
    "type": "INT64",
    "description": "Item ID"
  },
  {
    "name": "Item",
    "type": "STRING",
    "mode": "NULLABLE"
  }
]
EOF

}

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.