Tabelle in komprimierte Datei exportieren

Exportiert eine Tabelle in eine komprimierte Datei in einem Cloud Storage-Bucket.

Weitere Informationen

Eine ausführliche Dokumentation, die dieses Codebeispiel enthält, finden Sie hier:

Codebeispiel

Go

Bevor Sie dieses Beispiel anwenden, folgen Sie den Schritten zur Einrichtung von Go in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Go API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import (
	"context"
	"fmt"

	"cloud.google.com/go/bigquery"
)

// exportTableAsCompressedCSV demonstrates using an export job to
// write the contents of a table into Cloud Storage as compressed CSV.
func exportTableAsCompressedCSV(projectID, gcsURI string) error {
	// projectID := "my-project-id"
	// gcsURI := "gs://mybucket/shakespeare.csv"
	ctx := context.Background()
	client, err := bigquery.NewClient(ctx, projectID)
	if err != nil {
		return fmt.Errorf("bigquery.NewClient: %w", err)
	}
	defer client.Close()

	srcProject := "bigquery-public-data"
	srcDataset := "samples"
	srcTable := "shakespeare"

	gcsRef := bigquery.NewGCSReference(gcsURI)
	gcsRef.Compression = bigquery.Gzip

	extractor := client.DatasetInProject(srcProject, srcDataset).Table(srcTable).ExtractorTo(gcsRef)
	extractor.DisableHeader = true
	// You can choose to run the job in a specific location for more complex data locality scenarios.
	// Ex: In this example, source dataset and GCS bucket are in the US.
	extractor.Location = "US"

	job, err := extractor.Run(ctx)
	if err != nil {
		return err
	}
	status, err := job.Wait(ctx)
	if err != nil {
		return err
	}
	if err := status.Err(); err != nil {
		return err
	}
	return nil
}

Java

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Java-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Java API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryException;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.ExtractJobConfiguration;
import com.google.cloud.bigquery.Job;
import com.google.cloud.bigquery.JobInfo;
import com.google.cloud.bigquery.TableId;

// Sample to extract a compressed table
public class ExtractTableCompressed {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String projectName = "MY_PROJECT_NAME";
    String datasetName = "MY_DATASET_NAME";
    String tableName = "MY_TABLE_NAME";
    String bucketName = "MY-BUCKET-NAME";
    String destinationUri = "gs://" + bucketName + "/path/to/file";
    // For more information on export formats available see:
    // https://cloud.google.com/bigquery/docs/exporting-data#export_formats_and_compression_types
    String compressed = "gzip";
    // For more information on Job see:
    // https://googleapis.dev/java/google-cloud-clients/latest/index.html?com/google/cloud/bigquery/package-summary.html
    String dataFormat = "CSV";

    extractTableCompressed(
        projectName, datasetName, tableName, destinationUri, dataFormat, compressed);
  }

  public static void extractTableCompressed(
      String projectName,
      String datasetName,
      String tableName,
      String destinationUri,
      String dataFormat,
      String compressed) {
    try {
      // Initialize client that will be used to send requests. This client only needs to be created
      // once, and can be reused for multiple requests.
      BigQuery bigquery = BigQueryOptions.getDefaultInstance().getService();

      TableId tableId = TableId.of(projectName, datasetName, tableName);

      ExtractJobConfiguration extractConfig =
          ExtractJobConfiguration.newBuilder(tableId, destinationUri)
              .setCompression(compressed)
              .setFormat(dataFormat)
              .build();

      Job job = bigquery.create(JobInfo.of(extractConfig));

      // Blocks until this job completes its execution, either failing or succeeding.
      Job completedJob = job.waitFor();
      if (completedJob == null) {
        System.out.println("Job not executed since it no longer exists.");
        return;
      } else if (completedJob.getStatus().getError() != null) {
        System.out.println(
            "BigQuery was unable to extract due to an error: \n" + job.getStatus().getError());
        return;
      }
      System.out.println("Table extract compressed successful");
    } catch (BigQueryException | InterruptedException e) {
      System.out.println("Table extraction job was interrupted. \n" + e.toString());
    }
  }
}

Node.js

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Node.js-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Node.js API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

// Import the Google Cloud client libraries
const {BigQuery} = require('@google-cloud/bigquery');
const {Storage} = require('@google-cloud/storage');

const bigquery = new BigQuery();
const storage = new Storage();

async function extractTableCompressed() {
  // Exports my_dataset:my_table to gcs://my-bucket/my-file as a compressed file.

  /**
   * TODO(developer): Uncomment the following lines before running the sample.
   */
  // const datasetId = "my_dataset";
  // const tableId = "my_table";
  // const bucketName = "my-bucket";
  // const filename = "file.csv";

  // Location must match that of the source table.
  const options = {
    location: 'US',
    gzip: true,
  };

  // Export data from the table into a Google Cloud Storage file
  const [job] = await bigquery
    .dataset(datasetId)
    .table(tableId)
    .extract(storage.bucket(bucketName).file(filename), options);

  console.log(`Job ${job.id} created.`);

  // Check the job's status for errors
  const errors = job.status.errors;
  if (errors && errors.length > 0) {
    throw errors;
  }
}

Python

Bevor Sie dieses Beispiel ausprobieren, folgen Sie der Python-Einrichtungsanleitung in der BigQuery-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Angaben finden Sie in der Referenzdokumentation zur BigQuery Python API.

Richten Sie zur Authentifizierung bei BigQuery die Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für Clientbibliotheken einrichten.

# from google.cloud import bigquery
# client = bigquery.Client()
# bucket_name = 'my-bucket'

destination_uri = "gs://{}/{}".format(bucket_name, "shakespeare.csv.gz")
dataset_ref = bigquery.DatasetReference(project, dataset_id)
table_ref = dataset_ref.table("shakespeare")
job_config = bigquery.job.ExtractJobConfig()
job_config.compression = bigquery.Compression.GZIP

extract_job = client.extract_table(
    table_ref,
    destination_uri,
    # Location must match that of the source table.
    location="US",
    job_config=job_config,
)  # API request
extract_job.result()  # Waits for job to complete.

Nächste Schritte

Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.