チャット プロンプトをテストする(生成 AI)

パブリッシャー チャットモデルを使用してテキスト プロンプトをテストします。

コードサンプル

Java

このサンプルを試す前に、Vertex AI クイックスタート: クライアント ライブラリの使用にある Java の設定手順を完了してください。 詳細については、Vertex AI Java API のリファレンス ドキュメントをご覧ください。

Vertex AI に対する認証を行うには、アプリケーションのデフォルト認証情報を設定します。詳細については、ローカル開発環境の認証を設定するをご覧ください。


import com.google.cloud.aiplatform.v1beta1.EndpointName;
import com.google.cloud.aiplatform.v1beta1.PredictResponse;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1beta1.PredictionServiceSettings;
import com.google.protobuf.Value;
import com.google.protobuf.util.JsonFormat;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

// Send a Predict request to a large language model to test a chat prompt
public class PredictChatPromptSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String instance =
        "{\n"
            + "   \"context\":  \"My name is Ned. You are my personal assistant. My favorite movies"
            + " are Lord of the Rings and Hobbit.\",\n"
            + "   \"examples\": [ { \n"
            + "       \"input\": {\"content\": \"Who do you work for?\"},\n"
            + "       \"output\": {\"content\": \"I work for Ned.\"}\n"
            + "    },\n"
            + "    { \n"
            + "       \"input\": {\"content\": \"What do I like?\"},\n"
            + "       \"output\": {\"content\": \"Ned likes watching movies.\"}\n"
            + "    }],\n"
            + "   \"messages\": [\n"
            + "    { \n"
            + "       \"author\": \"user\",\n"
            + "       \"content\": \"Are my favorite movies based on a book series?\"\n"
            + "    }]\n"
            + "}";
    String parameters =
        "{\n"
            + "  \"temperature\": 0.3,\n"
            + "  \"maxDecodeSteps\": 200,\n"
            + "  \"topP\": 0.8,\n"
            + "  \"topK\": 40\n"
            + "}";
    String project = "YOUR_PROJECT_ID";
    String publisher = "google";
    String model = "chat-bison@001";

    predictChatPrompt(instance, parameters, project, publisher, model);
  }

  static void predictChatPrompt(
      String instance, String parameters, String project, String publisher, String model)
      throws IOException {
    PredictionServiceSettings predictionServiceSettings =
        PredictionServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (PredictionServiceClient predictionServiceClient =
        PredictionServiceClient.create(predictionServiceSettings)) {
      String location = "us-central1";
      final EndpointName endpointName =
          EndpointName.ofProjectLocationPublisherModelName(project, location, publisher, model);

      Value.Builder instanceValue = Value.newBuilder();
      JsonFormat.parser().merge(instance, instanceValue);
      List<Value> instances = new ArrayList<>();
      instances.add(instanceValue.build());

      Value.Builder parameterValueBuilder = Value.newBuilder();
      JsonFormat.parser().merge(parameters, parameterValueBuilder);
      Value parameterValue = parameterValueBuilder.build();

      PredictResponse predictResponse =
          predictionServiceClient.predict(endpointName, instances, parameterValue);
      System.out.println("Predict Response");
    }
  }
}

次のステップ

他の Google Cloud プロダクトのコードサンプルを検索およびフィルタするには、Google Cloud サンプル ブラウザをご覧ください。