予測
コレクションでコンテンツを整理
必要に応じて、コンテンツの保存と分類を行います。
predict メソッドを使用して、予測を取得します。
コードサンプル
特に記載のない限り、このページのコンテンツはクリエイティブ・コモンズの表示 4.0 ライセンスにより使用許諾されます。コードサンプルは Apache 2.0 ライセンスにより使用許諾されます。詳しくは、Google Developers サイトのポリシーをご覧ください。Java は Oracle および関連会社の登録商標です。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],[],[],[],null,["# Predict\n\nGets prediction using the predict method.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from typing import Dict\n\n from google.cloud import aiplatform\n from google.protobuf import json_format\n from google.protobuf.struct_pb2 import Value\n\n\n def predict_sample(\n project: str,\n endpoint_id: str,\n instance_dict: Dict,\n location: str = \"us-central1\",\n api_endpoint: str = \"us-central1-aiplatform.googleapis.com\",\n ):\n # The AI Platform services require regional API endpoints.\n client_options = {\"api_endpoint\": api_endpoint}\n # Initialize client that will be used to create and send requests.\n # This client only needs to be created once, and can be reused for multiple requests.\n client = aiplatform.gapic.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.prediction_service.PredictionServiceClient.html(client_options=client_options)\n instance = json_format.ParseDict(instance_dict, Value())\n instances = [instance]\n parameters_dict = {}\n parameters = json_format.ParseDict(parameters_dict, Value())\n endpoint = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.prediction_service.PredictionServiceClient.html#google_cloud_aiplatform_v1_services_prediction_service_PredictionServiceClient_endpoint_path(\n project=project, location=location, endpoint=endpoint_id\n )\n response = client.https://cloud.google.com/python/docs/reference/aiplatform/latest/google.cloud.aiplatform_v1.services.prediction_service.PredictionServiceClient.html(\n endpoint=endpoint, instances=instances, parameters=parameters\n )\n print(\"response\")\n print(\" deployed_model_id:\", response.deployed_model_id)\n predictions = response.predictions\n for prediction in predictions:\n print(\" prediction:\", dict(prediction))\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=aiplatform)."]]