Batchvorhersagejob abrufen

Ruft einen Batchvorhersagejob mit der Methode "get_batch_prediction_job" ab.

Codebeispiel

Java

Bevor Sie dieses Beispiel anwenden, folgen Sie den Java-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Java API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig;
import com.google.cloud.aiplatform.v1.BatchPredictionJob.OutputInfo;
import com.google.cloud.aiplatform.v1.BatchPredictionJobName;
import com.google.cloud.aiplatform.v1.BigQueryDestination;
import com.google.cloud.aiplatform.v1.BigQuerySource;
import com.google.cloud.aiplatform.v1.CompletionStats;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.ResourcesConsumed;
import com.google.protobuf.Any;
import com.google.rpc.Status;
import java.io.IOException;
import java.util.List;

public class GetBatchPredictionJobSample {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String batchPredictionJobId = "YOUR_BATCH_PREDICTION_JOB_ID";
    getBatchPredictionJobSample(project, batchPredictionJobId);
  }

  static void getBatchPredictionJobSample(String project, String batchPredictionJobId)
      throws IOException {
    JobServiceSettings jobServiceSettings =
        JobServiceSettings.newBuilder()
            .setEndpoint("us-central1-aiplatform.googleapis.com:443")
            .build();

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (JobServiceClient jobServiceClient = JobServiceClient.create(jobServiceSettings)) {
      String location = "us-central1";
      BatchPredictionJobName batchPredictionJobName =
          BatchPredictionJobName.of(project, location, batchPredictionJobId);

      BatchPredictionJob batchPredictionJob =
          jobServiceClient.getBatchPredictionJob(batchPredictionJobName);

      System.out.println("Get Batch Prediction Job Response");
      System.out.format("\tName: %s\n", batchPredictionJob.getName());
      System.out.format("\tDisplay Name: %s\n", batchPredictionJob.getDisplayName());
      System.out.format("\tModel: %s\n", batchPredictionJob.getModel());

      System.out.format("\tModel Parameters: %s\n", batchPredictionJob.getModelParameters());
      System.out.format("\tState: %s\n", batchPredictionJob.getState());

      System.out.format("\tCreate Time: %s\n", batchPredictionJob.getCreateTime());
      System.out.format("\tStart Time: %s\n", batchPredictionJob.getStartTime());
      System.out.format("\tEnd Time: %s\n", batchPredictionJob.getEndTime());
      System.out.format("\tUpdate Time: %s\n", batchPredictionJob.getUpdateTime());
      System.out.format("\tLabels: %s\n", batchPredictionJob.getLabelsMap());

      InputConfig inputConfig = batchPredictionJob.getInputConfig();
      System.out.println("\tInput Config");
      System.out.format("\t\tInstances Format: %s\n", inputConfig.getInstancesFormat());

      GcsSource gcsSource = inputConfig.getGcsSource();
      System.out.println("\t\tGcs Source");
      System.out.format("\t\t\tUris: %s\n", gcsSource.getUrisList());

      BigQuerySource bigquerySource = inputConfig.getBigquerySource();
      System.out.println("\t\tBigquery Source");
      System.out.format("\t\t\tInput Uri: %s\n", bigquerySource.getInputUri());

      OutputConfig outputConfig = batchPredictionJob.getOutputConfig();
      System.out.println("\tOutput Config");
      System.out.format("\t\tPredictions Format: %s\n", outputConfig.getPredictionsFormat());

      GcsDestination gcsDestination = outputConfig.getGcsDestination();
      System.out.println("\t\tGcs Destination");
      System.out.format("\t\t\tOutput Uri Prefix: %s\n", gcsDestination.getOutputUriPrefix());

      BigQueryDestination bigqueryDestination = outputConfig.getBigqueryDestination();
      System.out.println("\t\tBigquery Destination");
      System.out.format("\t\t\tOutput Uri: %s\n", bigqueryDestination.getOutputUri());

      OutputInfo outputInfo = batchPredictionJob.getOutputInfo();
      System.out.println("\tOutput Info");
      System.out.format("\t\tGcs Output Directory: %s\n", outputInfo.getGcsOutputDirectory());
      System.out.format("\t\tBigquery Output Dataset: %s\n", outputInfo.getBigqueryOutputDataset());

      Status status = batchPredictionJob.getError();
      System.out.println("\tError");
      System.out.format("\t\tCode: %s\n", status.getCode());
      System.out.format("\t\tMessage: %s\n", status.getMessage());

      List<Any> detailsList = status.getDetailsList();

      for (Status partialFailure : batchPredictionJob.getPartialFailuresList()) {
        System.out.println("\tPartial Failure");
        System.out.format("\t\tCode: %s\n", partialFailure.getCode());
        System.out.format("\t\tMessage: %s\n", partialFailure.getMessage());
        List<Any> details = partialFailure.getDetailsList();
      }

      ResourcesConsumed resourcesConsumed = batchPredictionJob.getResourcesConsumed();
      System.out.println("\tResources Consumed");
      System.out.format("\t\tReplica Hours: %s\n", resourcesConsumed.getReplicaHours());

      CompletionStats completionStats = batchPredictionJob.getCompletionStats();
      System.out.println("\tCompletion Stats");
      System.out.format("\t\tSuccessful Count: %s\n", completionStats.getSuccessfulCount());
      System.out.format("\t\tFailed Count: %s\n", completionStats.getFailedCount());
      System.out.format("\t\tIncomplete Count: %s\n", completionStats.getIncompleteCount());
    }
  }
}

Python

Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken. Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.

Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

from google.cloud import aiplatform


def get_batch_prediction_job_sample(
    project: str,
    batch_prediction_job_id: str,
    location: str = "us-central1",
    api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
    # The AI Platform services require regional API endpoints.
    client_options = {"api_endpoint": api_endpoint}
    # Initialize client that will be used to create and send requests.
    # This client only needs to be created once, and can be reused for multiple requests.
    client = aiplatform.gapic.JobServiceClient(client_options=client_options)
    name = client.batch_prediction_job_path(
        project=project, location=location, batch_prediction_job=batch_prediction_job_id
    )
    response = client.get_batch_prediction_job(name=name)
    print("response:", response)

Nächste Schritte

Wenn Sie nach Codebeispielen für andere Google Cloud -Produkte suchen und filtern möchten, können Sie den Google Cloud -Beispielbrowser verwenden.