Testen Sie Gemini 1.5-Modelle, unsere neuesten multimodalen Modelle in Vertex AI, und erfahren Sie, was Sie mit einem 1 Mio. Tokenkontextfenster erstellen können.
Tesen Sie Gemini 1.5-Modelle, unsere neuesten multimodalen Modelle in Vertex AI, und erfahren Sie, was Sie mit einem 1 Mio. Tokenkontextfenster erstellen können.
Trainingspipeline für tabellarische Prognosen erstellen
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Erstellt eine Trainingspipeline für die tabellarische Prognose mit der Methode "create_training_pipeline".
Codebeispiel
Bevor Sie dieses Beispiel anwenden, folgen Sie den Python-Einrichtungsschritten in der Vertex AI-Kurzanleitung zur Verwendung von Clientbibliotheken.
Weitere Informationen finden Sie in der Referenzdokumentation zur Vertex AI Python API.
Richten Sie zur Authentifizierung bei Vertex AI Standardanmeldedaten für Anwendungen ein.
Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.
from google.cloud import aiplatform
from google.protobuf import json_format
from google.protobuf.struct_pb2 import Value
def create_training_pipeline_tabular_forecasting_sample(
project: str,
display_name: str,
dataset_id: str,
model_display_name: str,
target_column: str,
time_series_identifier_column: str,
time_column: str,
time_series_attribute_columns: str,
unavailable_at_forecast: str,
available_at_forecast: str,
forecast_horizon: int,
location: str = "us-central1",
api_endpoint: str = "us-central1-aiplatform.googleapis.com",
):
# The AI Platform services require regional API endpoints.
client_options = {"api_endpoint": api_endpoint}
# Initialize client that will be used to create and send requests.
# This client only needs to be created once, and can be reused for multiple requests.
client = aiplatform.gapic.PipelineServiceClient(client_options=client_options)
# set the columns used for training and their data types
transformations = [
{"auto": {"column_name": "date"}},
{"auto": {"column_name": "state_name"}},
{"auto": {"column_name": "county_fips_code"}},
{"auto": {"column_name": "confirmed_cases"}},
{"auto": {"column_name": "deaths"}},
]
data_granularity = {"unit": "day", "quantity": 1}
# the inputs should be formatted according to the training_task_definition yaml file
training_task_inputs_dict = {
# required inputs
"targetColumn": target_column,
"timeSeriesIdentifierColumn": time_series_identifier_column,
"timeColumn": time_column,
"transformations": transformations,
"dataGranularity": data_granularity,
"optimizationObjective": "minimize-rmse",
"trainBudgetMilliNodeHours": 8000,
"timeSeriesAttributeColumns": time_series_attribute_columns,
"unavailableAtForecast": unavailable_at_forecast,
"availableAtForecast": available_at_forecast,
"forecastHorizon": forecast_horizon,
}
training_task_inputs = json_format.ParseDict(training_task_inputs_dict, Value())
training_pipeline = {
"display_name": display_name,
"training_task_definition": "gs://google-cloud-aiplatform/schema/trainingjob/definition/automl_forecasting_1.0.0.yaml",
"training_task_inputs": training_task_inputs,
"input_data_config": {
"dataset_id": dataset_id,
"fraction_split": {
"training_fraction": 0.8,
"validation_fraction": 0.1,
"test_fraction": 0.1,
},
},
"model_to_upload": {"display_name": model_display_name},
}
parent = f"projects/{project}/locations/{location}"
response = client.create_training_pipeline(
parent=parent, training_pipeline=training_pipeline
)
print("response:", response)
Nächste Schritte
Informationen zum Suchen und Filtern von Codebeispielen für andere Google Cloud-Produkte finden Sie im Google Cloud-Beispielbrowser.
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
[[["Leicht verständlich","easyToUnderstand","thumb-up"],["Mein Problem wurde gelöst","solvedMyProblem","thumb-up"],["Sonstiges","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Problem mit der Übersetzung","translationIssue","thumb-down"],["Sonstiges","otherDown","thumb-down"]],[],[],[]]